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Abstract

Artificial Intelligence (A.I.) and Robotics, as two main sci-
entific domains related to Computer Science, both have a
long history since their introduction. If these two domains
were close 40 years ago (e.g., with the robot SHAKEY using
the first task planner STRIPS), they seem to have followed
separate paths since then, with specific academic forums for
each. In this paper, we first review how A.I. is perceived by
Robotics researchers (a library of efficient algorithms) and its
opposite (an application domain). Facing this reality, we then
advocate that a unifying notion is the one of intelligent robots
(robots on one side and intelligence on the other), the main
characteristics of intelligence for robots being to be able to
survive in their environment. We propose the notion of multi-
layered software architecture of robotic agents, as the key to
reach this goal. By abstracting our discussion, we advocate
that the key theoretical difference between the two scientific
domains lays (1) in the uncertainty inherent to Robotics and
not necessarily in A.I., and (2) in the difference between con-
tinuity and discreteness (and how to mix them). As an ex-
ample of intelligent robot, we consider automated terrestrial
vehicles (autonomous cars) from the Intelligent Transporta-
tion Systems domain (ITS), in which supervision (a Robotics
notion) can be considered as an upper layer of their software
architectures. Such high level common notion seems more
fruitful and useful than merely improving a specific compo-
nent (i.e., perception, path planning or control) by importing
another A.I. algorithm.

Introduction
Artificial Intelligence (A.I.) and Robotics, as two main sci-
entific domains related to Computer Science, both have a
long history since their introduction, which can be traced
back over the centuries for their initial ideas. Despite
decades of research and engineering work in each commu-
nity, the definition of each domain seems difficult to phrase,
in order to cover the vast variety of work performed under
each banner.

Let us attempt at using one definition of A.I.: Is relevant
to A.I. any computer program which would be said ”intel-
ligent” if the same observed behavior would be so qualified
when performed by a human. This wording leads to the im-
itation game, or Turing test, in which a human has to de-
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termine to whom it communicates with through a computer
interface: a machine or a human (Turing 1950).

On the other hand, let us attempt at using one definition
of Robotics: Robotics is the science of perceiving and ma-
nipulating the physical world through computer-controlled
mechanical devices (Thrun, Burgard, and Fox 2006).

Stated as above, there seems to be a wide gap between
the two scientific domains, except if we talk about intelli-
gent robots, i.e., robots on one hand which would exhibit
an intelligent behavior on the other hand. To push the idea
to its extreme point, a test similar to the Turing’s one could
be defined for such intelligent robots: a human tester spends
one hour with another human and one hour with an intelli-
gent robot, in any order of appearance; And the human tester
then has to determine who was the robot and who was the
human. If he fails, then the robot is said to be intelligent.
How far are we from this dream?

Fourty years ago (in the early 70s), these two scientific
domains were closer. For example, the robot SHAKEY was
a major advance both in Robotics and in A.I.: while pre-
senting an interesting mobile robot, this work proposed the
first A.I. task planner known as STRIPS (Fikes and Nils-
son 1971). This started the scientific A.I. subdomain of task
planning, which led 40 years later to the ICAPS conference
series 1. However nowadays, the two scientific domains have
followed separate paths, leading to two different scientific
communities with their own academic forums for each: Gen-
eral conferences in A.I. include IJCAI2, AAAI3 and PFIA4;
General conferences in Robotics include ICRA5, IROS6 and
ICARCV7. Similarly, in France, students must choose be-
tween M.Sc. degrees in Robotics or M.Sc. degrees in A.I.,
leading to two different kinds of Ph.D. work in laboratories
specific to each domain8.

1http://www.icaps-conference.org/
2http://ijcai.org/
3https://www.aaai.org/Conferences/AAAI/aaai14.php
4http://pfia2013.univ-lille1.fr/
5http://www.icra2014.com/
6http://www.iros2014.org/
7http://www.icarcv.org/2014/
8We are aware of two exceptions to this separation among

French laboratories: the LAAS laboratory in Toulouse and the ON-
ERA laboratory also in Toulouse both own teams explicitly dedi-
cated to these two topics together.



In this paper, we first consider A.I. and Robotics sepa-
rately, and pinpoint the bridges between the two scientific
communities. Although separated nowadays, the two scien-
tific communities exchange algorithms, and ideas flow from
one domain to the other, and back. We then advocate that the
point where the two scientific communities seem to meet
is the notion of software architecture of robotic agent: in-
telligent robots need embedding supervision, and A.I. algo-
rithms need embodiement. By abstracting our discussion, we
propose that the main difference between the two scientific
communities seems to lay (1) in th notion of uncertainty and
(2) in the difference between continuity and discreteness —
a problem solved at least partially by the notion of software
architecture. Finally, we describe an example of intelligent
robot: autonomous terrestrial vehicles, i.e., Intelligent Trans-
portation Systems (ITS).

This paper is organized as follows: Section 2 identifies
Robotics in the way it perceives A.I.; Section 3 identifies
A.I. in the way it perceives Robotics. Section 4 proposes an
intermediate approach which unifies the two research com-
munities through the notion of uncertainty, software archi-
tecture of robotic agents and the difference between conti-
nuity and discreteness. Section 5 proposes an example of
intelligent robot: an autonomous terrestrial vehicle, i.e., an
autonomous car. Finally we sum up our contribution and
propose future research directions.

A.I. as perceived from Robotics
The introduction of one of the most widely known textbooks
on Robotics (Thrun, Burgard, and Fox 2006) starts this way:
“Robotics is the science of perceiving and manipulating the
physical world through computer-controlled mechanical de-
vices. Examples of successful robotic systems include mo-
bile platforms for planetary exploration, robotics arms in
assembly lines, cars that travel autonomously on highways,
actuated arms that assist surgeons. Robotics systems have
in common that they are are situated in the physical world,
perceive their environments through sensors, and manipu-
late their environment through things that move.” (excerpt
from (Thrun, Burgard, and Fox 2006), page 3).

In planetary exploration, the environment is static and un-
til now, there is no interaction with intelligent agents. Con-
cerning industrial robots, they have a limited number of de-
grees of freedom and the environment is closed and designed
to be safe. For lane keeping system, the problem is limited to
lateral and longitudinal control, which is, even though com-
plicated, really far away from what is called ”autonomous
driving”. And finally, for assisted surgery, the robot is en-
tirely controlled by humans: the robot does not take any
decision. From these examples, it comes that this kind of
robots are not confronted with changing environment and
unpredictable intelligent agents: this is not the real world.
It is a sub-part of what is called robotics, which has to deal
with limited resources in term of energy, computational ca-
pacity, but, which cannot be considered as intelligent.

What do we call an intelligent robot? As any intelligent
entity, its ultimate goal should be to ensure its survival in
its environment. Developping this idea, an intelligent robot
should be able to ensure its energy independence (know how

to refill its energy resources). Then, it should be able to di-
agnose its own state and to evaluate its perception abilities
(what can it do, what can’t it do?). Towards survival, ac-
cording to a mission (exploration, aid to individuals, etc), an
intelligent robot should be able to react properly to an un-
known/abnormal situation. Finally, it should be able to learn
from experience. This list of goals is closed in spirit to clas-
sical models in Psychology, such as (Maslow 1954): a pyra-
mid of needs is proposed for explaining the behavior of hu-
mans along the following dimensions: physiological (most
urgent), safety, affiliation, achievement and learning (least
urgent). All this suggests that Robotics needs A.I. at a high
level — such an intelligent robot would pass the extended
Turing test (see Introduction section) on the long term.

Unfortunately, A.I. is often only considered as a library of
algorithms, in which Robotics researchers dig as necessary
when their algorithms are not good enough for the tasks they
plan to do. Many examples can be exhibited that follow this
idea: The A* algorithm, a major advance in A.I. in the late
60s, can be interpreted as a best-first search on paths, i.e.,
given a heuristic function, A* computes a path from a root
node to a potential solution node through the current node
in some state space. It has been used as a major search algo-
rithm whenever an A.I. researcher needs to an algorithm to
search through a graph of possible states. But this algorithm
is also widely used in Robotics: The idea is to discretize the
environment (a map), and use this algorithm as a path finder:
after all, the path from the root node to a solution node can
be interpreted literally as a path through states as cells on
a discretized map of some environment. More precisely, an
A* node is an environment cell, with the root node being the
start location cell in this map and a solution node being a
target location cell on this same map. Therefore the A* al-
gorithm can trivially be used as a path planner in Robotics
(finding a collision-free path on a static grid map). This is an
example of Robotics researchers using an A.I. algorithm for
its efficiency and properties.

Similar examples can be drawn along these lines (see sec-
tion 5 in the case of Intelligent Transportation Systems).

Robotics as perceived from A.I.
The most widely adopted textbook on A.I. nowadays (Rus-
sell and Norvig 2003) only dedicates two chapters to
Robotics: Chapter 24 on ”Perception” and chapter 25 on
”Robotics”. If it surely is interesting to enlarge the field of
discourse from A.I. to Robotics, this chapter organization
however seems to imply that Robotics could be considered
as an application domain of A.I. with A.I. being the most
important topic.

Similarly, the topics list of the AAAI conference series
only mentions ”Robotics” as a single keyword, whereas any
robotics conference opens to a dozen of topics at least, and
not ”Robotics” as the only one.

Another example is given by (Koenig, Likhachev, and
Furcy 2004): these authors propose an improved version of
the A* algorithm, and test their algorithm on a mobile robot.
This is another example of A.I. work which is applied to
Robotics.



As another example, the whole domain of task planning
(see the ICAPS conference series) aims at building planners
(not to be confused with path-planners in Robotics), which
are computer programs capable of constructing a linear plan
of actions using an initial state, goals and generic operators,
all described in PDDL (Planning Domain Definition Lan-
guage). A PDDL operator typically uses fluents (i.e., terms)
such as on(B,A), stating that block B is on block A in the
blocks world domain (where the problem mostly is to find
how to build towers of blocks on an infinite table). Problems
arise when we consider the huge amount of wrong plans of
actions which could be built by these task planners — a com-
binatorial explosion which leads to the mere existence of this
scientific community. But now the question becomes: How
does a task planner knows that block B is on block A? Per-
ception, possibly vision algorithms, should be used here, in
order to establish that there actually is a block labelled B
which is stacked on another block labelled A. Such a per-
ceptive task planner is rarely considered per se by this com-
munity, except if a task planner is embedded into a mobile
robot capable of perceiving its environment (Fikes and Nils-
son 1971) (Morignot et al. 2012). All the work in that scien-
tific community mainly aims at being embedded into robotic
agents at some point (e.g., spatial exploratory probes, auto-
mated terrestrial vehicles).

Middle Ground
The main points of the previous two sections can be summed
up this way: On one hand, Robotics researchers import A.I.
algorithms when needed by their current application. A.I. is
considered as a library of algorithms into which Robotics
researchers dig to improve one element of the behavior of
their robot. Let’s phrase this as the A.I.-as-algorithm-library
approach. On the other hand, A.I. researchers propose new
algorithms and apply them to robots as demonstrators. Let’s
phrase this as the Robotics-as-application-domain approach.
How then can we merge the two previous approaches? Are
A.I. researchers doomed to provide algorithms to Robotics
researchers? Are Robotics researchers doomed to provide
robotic platforms on which A.I. researchers can demonstrate
their algorithms?

Uncertainty
In an ideal world with infinite computational resources,
the entire world could be modeled with uncertainty. How-
ever, this is not possible and crucial choices must be done
concerning the knowledge representation and random vari-
ables that are used. Concerning the knowledge representa-
tion, several options are offered, from classical probabil-
ities (Thrun, Burgard, and Fox 2006) to more time con-
suming ones such as Dempster-Shafer representation (Mur-
phy 1998) or Transferable Belief Model (TBM) (Nashashibi,
Khammari, and Laurgeau 2008), which allows to deal with
unknown and conflicted situations, and also to manage sen-
sor reliability (Elouedi, Mellouli, and Smets 2004).

Robotics aims at dealing with uncertainty data to take the
best decision as possible (even it is not always used in prac-
tice). As opposed to A.I., which often assumes that things
are known, i.e. reasons at a symbolic level.

Figure 1: Software architecture of an intelligent transporta-
tion system (ITS).

Supervision through Software Architectures
The reknown chain of procedures in Robotics, e.g., auto-
mated vehicles, involves perception (i.e., turning data from
sensors into symbolic percepts), path-planning (i.e., finding
a collision free trajectory from a start location to a target lo-
cation in an environment) and control (i.e., sending the right
voltage to effectors, in order to reach a given posture) (see
Fig. 1). If every previous module can incorporate A.I. algo-
rithms (e.g., path-planning with an A* algorithm), we be-
lieve that the main lacking concept in the previous chain is
supervision, as a way to reason over the previous 3 mod-
ules (e.g., providing them with parameters). This supervi-
sion layer appears as one way to bring reasoning to an auto-
mated vehicle, to take an example from the Intelligent Trans-
portation Systems (ITS) domain.

This missing supervision layer is provided by the notion
of software architecture of a robotic agent. We define a soft-
ware architecture as a structure to organize the various al-
gorithms inside a robotic agent. It should encompass very
fast loops at the perception module or the control module,
and potentially slow (eventually very slow) reasoning algo-
rithms.

Many such software architectures have been proposed:
Three layers (Alami et al. 1998), three layers with a sequen-
cor (Gat 1998), two layers (Hayes-Roth et al. 1995), among
others.

For example, Hayes-Roth et al. propose a two-layer soft-
ware architecture for robotic agents, one layer encapsulating
perception and control, and another layer encapsulating situ-
ation assessment, task planning and plan monitoring (Hayes-
Roth et al. 1995) (see Fig. 2). One main characteristics of
this software architecture is that the reasoning layer runs in
parallel with the acting layer. This way, a potentially slow
(eventually very slow) reasoning module such as task plan-
ning can finish its computation while the robotic agent is
performing its task in the environment, thus preventing its
motion to be blocked because of too slow reasoning compu-



Figure 2: Two-level software architecture (Hayes-Roth et al.
1995).

tation.
In the robotics subdomain of ITS, Pollard et al. propose

an intermediate approach towards full autonomy based on
control layers, and self-assessment of the sensor states, both
being based on dedicated ontologies (Pollard, Morignot, and
Nashashibi 2013). This way, every algorithm running on an
automated vehicle can be described by a concept of such
ontology, and reasoning over these concepts can take place
(through SWRL inference rules, in this example) — a min-
imal reasoning encoding supervision is hence represented
with a minimal computation cost.

Continuity vs. discreteness
The previous discussion on uncertainty, a first class con-
cept in Robotics, leads to the notion of probability, as a way
to represent uncertain knowledge and reason on errors and
noisy data. As such, a probability is a real number between
0 and 1, i.e., based on the set of real numbers R. Now rea-
soning for supervision typically involves symbols (e.g., for
the previous ontologies), i.e., a finite subset of the set of in-
tegers N. The question then becomes: How can one merge
a computation on R with a computation on N? N ⊂ R but
the opposite is false (R cannot be enumerated, see Cantor’s
proof). The only remaining possibility towards merging R
(continuity) and N (discreteness) is to discretize an interval
of real numbers, to a coarse or fine grain.

This opposition between continuity and discreteness is
not specific to A.I. and Robotics. For example, in Opera-
tions Research, the simplex algortithm is used to (hopefully)
find a solution to a problem expressed as a linear cost func-
tion and linear inequalities over variables. The variables of
this model are expressed on the set of real numbers R. Let
us call this method a reasoning over continuous variables.
But if we want to switch to discrete variables, i.e., variables
expressed on the set of natural numbers N, then the problem
becomes NP-complete. Let us call this approach a reasoning
on discrete variables. To solve this problem, this commu-

nity uses a branch and bound algorithm, which launches a
simplex algorithm at each node of a search tree (relaxed so-
lution), forces some variables to become integers and launch
a simplex algorithm again, while propagating the cost value
from previous branches to cut on the current branch if nec-
essary. Since variables are progressively assigned to integer
values, the branch and bound algorithm converges to a dis-
crete solution, i.e., at the end all variables are set to integers
and not real numbers (we hide away the worst-case problem
of variables exactly having the value 0.5, 1.5, 2.5 and so on
in a relaxed solution). In that scientific domain either, as for
A.I. and Robotics, merging continuous search and symbolic
search is solved by adding symbolic reasoning on top of a
continuous reasoning. This is analoguous to software archi-
tectures (see previous section), in which an upper layer is
used for symbolic reasoning and a lower layer is used for
continuous algorithms (perception and control).

Example: The ITS domain
From the proposed definition of an intelligent robot (see sec-
ond section), the most advanced work in progress for intel-
ligent robots seems to be autonomous driving, i.e., intelli-
gent terrestrial vehicles in the ITS scientific domain. An au-
tonomous car is a very complex robot (see Fig. 3, refining
Fig. 1) driving in a urban jungle. It is equipped with many
sensors: Proprioceptive sensors (acceloremeter, gyrometer,
odometers, etc.) provide information about the vehicle it-
self such as its velocity or lateral acceleration. On the other
hand, exteroceptive sensors, such as video camera, laser or
GPS devices, provide information about the environment
surrounding the vehicle or its location. In addition, intelli-
gent vehicles are connected to the other vehicles as well as
with the infrastructure through communication: V2V (vehi-
cle to vehicle), V2I (vehicle to infrastructure) and even Ve-
hicle to Pedestrian. Additionally, even though really specific
to driving applications, for legal reasons, it has to take into
account the human will into the decision loop and to interact
with the driver.

At each robotic level, A.I. can be used if it is not too time
consuming for the limited robot resources. For example, Li
and Nashashibi import genetic algorithms (a whole subfield
of A.I.) for merging maps (Li and Nashashibi 2012): Given
one grid map of some environment, how to translate/rotate a
second grid map so as to maximize the number of pixels that
match between these two maps? Several approaches to this
problem have been proposed, but these authors import an
A.I. algorithm into Robotics for proposing a new solution.
These authors use their map merging algorithm to localize
an automated vehicle with respect to another one (two vehi-
cles in a row).

As another example, Pérez et al. import fuzzy logic (a
strong contribution to A.I.) for controlling an automated ve-
hicle (Pérez et al. 2011): A set of fuzzy rules defines the
behavior of the automated car in many situations, and fuzzy
logic is used to represent and activate these fuzzy rules in
order for the automated vehicle to exhibit a behavior re-
garding the given goal location and obstacles on the way.
These authors use their approach to make an automated car
autonomously drive smoothly on a roundabout, for example.



Figure 3: Automation loop for ITS.

Through these examples, it appears that A.I. techniques
can be relevant to solve low level robotics problem concern-
ing one element of the perception, planning or control loop.
However, our claim is that A.I. techniques can be used at
a higher level, which is called ”Supervision” (see Fig. 3)
in order to bring intelligence into the decision process. For
example, reaching a full autonomous driving mode in all
situations seems difficult in practice due to weather condi-
tions and sensor limitations for instance. An autonomous
car, in addition to perceiving its environment, should also
self-assess its own perception abilities, in order to give the
control partially back to the driver or to stop if safety is
not guaranty due to sensor/condition limitations. In (Pollard,
Morignot, and Nashashibi 2013), two ontologies are used:
one to represent the automation spectrum and the other to
define situation assessment. Then, inference rules are used
(integrating the uncertainty on the considered situation el-
ement estimation) in order to determine the maximum au-
tomation level allowed by the system abilities. This sym-
bolic reasoning aims at what we call ”intelligence” or a be-
havior which will allow the robot to better survive in its en-
vironment.

Recalling the definition given in Section 2, some other
works related to A.I. supervision layer can be cited. Among
them, in (Armand, Filliat, and Ibanez-Guzman 2013), Ar-
mand et al. propose to model stop intersections with Gaus-
sian processes, which can be seen as a part of learning from
experience. However, it is limited to the driver behavior and
no work is proposed on the hazardousness of trajectories and
the reaction to abnormal/unknown situations is still crucially
missing.

Conclusion
In this paper, we advocate that A.I. and Robotics meet on
the construction of intelligent robots, to which we propose a
definition as having a long term goal of survival in its envi-
ronment. For this, we review the way A.I. is considered by
Robotics researchers (a library of efficient algorithms) and
the way Robotics is considered by A.I. researchers (an ap-
plication domain). Facing this reality, we propose that the
two scientific communities meet on the notion of software
architecture of intelligent agents, i.e., both win by consid-
ering the other domain at a high level, and not only as a
library of algorithms for specific components or as an ap-
plication domain for specific algorithms. Then we focus on
a scientific domain, Intelligent Transportation Systems, for
which survival of a vehicle in a urban environment is a goal
of sharp interest (risk of killing the car’s passengers). In this
domain, we advocate that supervision, as an upper layer in a
software architecture, is crucial towards building intelligent
robots — and not only improving each component of the
vehicle separately.

Future work involves merging constraint programming, as
one paradigm for reasoning, and Robotics, in a way close to
merging evolutionnary algorithms and Robotics (Doncieux
et al. 2011).

Acknowledgments
The authors thank the members of the RITS project-team at
INRIA Rocquencourt.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. International Jour-
nal of Robotics Research (Special Issue on “Integrated Ar-
chitectures for Robot Control and Programming”) 17(4).
Armand, A.; Filliat, D.; and Ibanez-Guzman, J. 2013. Mod-
elling stop intersection approaches using gaussian processes.
In 16th International IEEE Conference on Intelligent Trans-
portation System - ITSC.
Doncieux, S.; Mouret, J.-B.; Bredeche, N.; and Padois, V.
2011. Evolutionnary robotics: Exploring new horizons.
In Studies in Computational Intelligence, New Horizons in
Evolutionnary Robotics, volume 341, 3–25. Springer.
Elouedi, Z.; Mellouli, K.; and Smets, P. 2004. Assess-
ing sensor reliability for multisensor data fusion within the
transferable belief model. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on 34(1):782–787.
Fikes, R., and Nilsson, N. 1971. Strips: A new approach
to the application of theorem proving. Artificial Intelligence
2:189–208.
Gat, E. 1998. Three-layer architecture. In et al., D. K., ed.,
A.I. and Mobile Robots. AAAI Press.
Hayes-Roth, B.; Pfleger, K.; Morignot, P.; and Lalanda, P.
1995. Plans and behavior in intelligent agents. In Stanford
University, Knowledge Systems Laboratory, Tech. Report.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning a*. Artificial Intelligence 155(1-2):93–146.



Li, H., and Nashashibi, F. 2012. A new method for oc-
cupancy grid maps merging: Application to multi-vehicle
cooperative local mapping and moving object detection in
outdoor environment. In 12th International Conference on
Control, Automation, Robotics and Vision (ICARCV’12).
Maslow, A. 1954. Motivation and Personality. New York:
Harper’s and Row.
Morignot, P.; Soury, M.; Leroux, C.; Vorobieva, H.; and
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