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Abstract—In this paper, we study the global traffic density
and emergent traffic behavior of several hundreds of intelligent
vehicles, as a function of V2V communication (for the ego
vehicle to perceive traffic) and path-finding heuristics (for the
ego vehicle to reach its destination), in urban environments.
Ideal/realistic/no V2V communication modes are crossed with
straight-line/towards-most-crowded/towards-least-crowded path-
finding heuristics to measure the average trip speed of each
vehicle. The behaviours of intelligent vehicles are modelled by
a finite state automaton. The V2V communication model is also
built based on signal propagation models in an intersection sce-
nario and a Markov-chain based MAC model. Our experiments
in simulation over up to 400 vehicles exhibit attractive insights:
1) communication’s impact is positive for the performance of
the emergent vehicles’ behaviour, however, 2) the path-finding
heuristics may not obtain their expected collective behaviour due
to the communications errors in realistic road environment.

I. INTRODUCTION

Wireless communication is expected to play an important
role for road safety, efficiency, and comfort of road users. Par-
ticularly, vehicle to vehicle (V2V) and vehicle to infrastructure
(V2I) communications appear as mostly important for an intel-
ligent autonomous vehicle to perceive outside traffic, in order
to help to dynamically determine its path to its destination, e.g.,
avoiding perceived traffic jams in urban scenarios. To support
such ITS applications the IEEE 802.11p (ETSI ITS G5 for
the European usage) is standardized for V2X communications
using the 5.9 GHz frequency bands. Furthermore, ETSI defined
two types of message sets, cooperative awareness messages
(CAM) and decentralized environmental notification messages
(DENM), which are generated periodically and triggered by
events, respectively [1]. A large number of research and
development studies are made on signal propagation in realistic
roads, channel capacity for dense traffic condition, message
dissemination in a geographical area, and so on [2], [3]. These
previous and ongoing efforts brought important insights on the
remaining challenges of the communication technologies in
various road and traffic scenarios.

The automated cooperative driving applications require
efforts on multiple research domains including robotics, ar-
tificial intelligence, and communications to build a safe and
intelligent collective driving behavior. While some studies
show the potentials of the V2V communications for safer and
smoother automated driving [4], [5], [6], it is still not clear if
the standardized technologies can meet the strict requirements
of the automated driving applications. More importantly, if
the decisions for individual vehicles’ control are based on
the V2V communications, the communications performance
must largely affect the ”quality” of the collective behavior.

Furthermore, since the decisions on e.g., path planning impact
the traffic density, they consequently impact the performance
of the wireless communications. To the best of our knowl-
edge, the inter-dependency between communications and the
behavior of automated vehicles is not yet explored. Motivated
by this, in the current paper, we combine different V2V
communication modes with different dynamic path-finding
heuristics, over a population of several hundreds of intelligent
vehicles, to observe convergence towards stable traffic. The
various traffic stability levels are compared in order to exhibit
most efficient combinations of communication modes and
path-finding heuristics.

The next section presents the model (environment, vehicles,
communication); Section III presents experimental results, and
the last two sections compare our work to previous work and
sum up our contributions.

II. MODEL

A. Environment

An urban environment is considered, with streets exclu-
sively oriented North-South or East-West. Perpendicular streets
cross at intersections. Parallel streets are separated by the
same distance. As a first approximation (and for not limiting
vehicles’ motion), we assume that streets loop at the borders
of the simulated environment (wrapped/circular environment),
i.e., the rightmost (resp. topmost) extremity of a East-West
(resp. North-South) street meets with its leftmost (resp. bot-
tom) extremity. A street is composed of two lanes, one up
and one down, and the vehicles circulate on the right lane of
a street (North-American driving way). Formally, streets can
be represented as a directed cyclic graph, where vertices are
intersections and arcs are lanes (2 arcs in opposite directions
between 2 nodes).

Traffic lights are modelled at the four entering lanes of
each intersection, 2 opposed to 2, all with the same phase (no
green wave).

B. Intelligent vehicles

1) Finite state automaton: The behavior of each intelligent
vehicle is modelled by a finite state automaton:

1) Go straight on a lane and accelerate until reaching the
speed limit, or decelerate because of other vehicles
(collision avoidance) or red traffic lights (respect of
traffic rules);

2) If the intelligent vehicle reaches its destination on
its lane, assign a random new one to it (perpetual
motion);



Fig. 1. Topology of the environment: intelligent vehicles (blue car icons)
circulate on the right lane of streets (white patches), each intersection has one
traffic light per entering lane (green/red patches), destinations are displayed
(pink patches).

3) When the intelligent vehicle reaches an intersection,
possibly communicate with the other vehicles in the
four directions North/East/South/West to determine
the perceived vehicles;

4) Once the intelligent vehicle has communicated,
choose the exit direction of the intersection among
the 4 possible ones North/West/South/East;

5) Once the intelligent vehicle has chosen its targetted
exit in the current intersection, follow a 1- to 4-
step plan to go to this exit through the intersection
while avoiding collision with other vehicles on the
intersection;

6) Go to state 1, until a timeout (end of simulation) has
elapsed.

Longitudinally (state 1 of the automaton above), an intel-
ligent vehicle accelerates when there is no vehicle in front of
it on its lane (catching up), until it reaches the speed limit;
it decelerates (and possibly stops) for not colliding a vehicle
in front of it on its lane (collision avoidance), or when it
encounters a red traffic light (respect of traffic rules).

When on a lane, an intelligent vehicle stays on its lane and
never overtakes, i.e., we assume that continuous yellow lines
hold in the middle of each road.

When an intelligent vehicle has reached its destination
(state 2), a new random destination is assigned to it (any point
on a lane which is not located at an intersection), for cars to
run constantly (a.k.a. taxi called by customers, parking slots
on the side of roads are not modelled).

2) Intersection management: Intelligent vehicles follow a
1- to 4-step plan to traverse an intersection and reach the exit
lane they have heuristically chosen (state 5 of the previous
automaton). Streets are composed of two lanes and vehicles
run on the right lane of a street, leading to 4 patches at an
intersection, labelled from 1 to 4 (see Fig. 2). If a vehicle,
V 1, has to make a right turn, it will go straight to patch 1,
then make a right turn, and then go straight (1-step plan); If
V 1 has to go straight across the intersection, it will go straight
to patch 1, then straight to patch 2, and then go straight (2-
step plan); If V 1 has to make a left turn, it will go straight
to patch 1, then straight to patch 2, then make a left turn to

patch 3, and then go straight (3-step plan); If V 1 has to make
a U turn, it will go straight to patch 1, then straight to patch
2, then make a left turn to patch 3, then make a second left
turn to patch 4, and then go straight (4-step plan).

Each heading change for right or left turns is performed
by 90 degrees addition to/subtraction from the current heading
of the vehicle (see e.g. [7] for a discussion on more precise
trajectory models).

V1 

V3 

V2 d 

1 2 

3 4 

Fig. 2. Four patches at an intersection, labelled 1 to 4, for 1-step to 4-
step plan for intersection traversal. The 3 other cases (i.e., a vehicle heading
North/South/West) can be obtained by rotation.

The same rules as before on acceleration/deceleration hold
for intersection crossing, which is sufficient to reach collision
avoidance, and thus safety, during this phase. For example,
we observed vehicles aiming at making a left turn at an
intersection, waiting on patch 2 in the previous 3-step plan
for other vehicles to pass on the opposite lane, before going
straight to patch 3 when no more vehicle passes, and then
going straight to the exit.

3) Heuristics: At each intersection (state 4 of the previous
automaton), each intelligent vehicle can always choose among
four directions, given the topology of the streets in our urban
environment: right, straight, left and back (the vehicle performs
a U-turn). When about to enter an intersection, each intelligent
vehicle uses a heuristics to choose one of the four exits of the
intersection, leading to its next lane. All vehicles use the same
heuristics, for the population to be able to exhibit a global
emergent behavior.

The 3 possible heuristics for an intelligent vehicle to choose
its exit at an intersection are:

Compass. The intelligent vehicle runs as close as pos-
sible to a straight line to its destination. The vehicle is
assumed to own a GPS sensor, computing the bird’s fly
ideal line from the current location to the destination.
No V2V communication is performed. When entering
an intersection, an intelligent vehicle computes the
ideal angle which would lead to its destination if there
was a direct straight lane towards it. The chosen angle
among North/East/South/West is the one closest to
the previous ideal angle. Given the topology of the
environment (no curved streets, straight perpendicular
streets only), such heuristics implements the shortest
path to the vehicle’s destination.

Towards least crowded (“No Ant”). When entering
an intersection, an intelligent vehicle computes the



ideal angle to its destination and the absolute differ-
ence with the angles corresponding to the four exits of
the intersection, as previously. But now it considers the
first two best angles: if the best one corresponds to the
shortest path (see previous heuristics), the second best
one could fit too because of the strictly perpendicular
topology of streets: For example, going straight and
making a right turn is almost equivalent to making
a right turn and then making a left turn — the path
might be slightly longer only. Therefore, there is a
choice to perform among these first two best angles:
the intelligent vehicle performs V2V communication
to assess the number of other cars in each of these two
directions. If the traffic is the same in these two direc-
tions, the first best angle is chosen as in the compass
heuristics. But if one has strictly less traffic than the
other, the former angle/direction/exit is chosen: This
heuristics advises to avoid traffic whenever possible.
Therefore the second best angle (possibly leading to
a slightly longer path to destination) might be chosen
when the traffic is less dense than on the first best
angle.

Towards most crowded (“Ant”). This heuristics is
close to the previous one, except for the choice among
the first two best angles: This heuristics chooses the
most crowded angle among the first two best angles. In
practice, this heuristics is the opposite of the previous
one (reversed test). Therefore the second best angle
might be chosen when the traffic is denser than on
the first best angle, possibly leading to choosing a
slightly longer path, but for a reason opposite as in
the previous heuristics. This heuristics is referred to
as “Ant”, since it is close in spirit to ant colony
optimization algorithms [8] in which ant agents leave
traces for further ant agents to follow them.

However, the last two heuristics may choose the second best
angle several times in a row depending on traffic distribution,
possibly leading vehicles to deviate too much from their ideal
path (i.e., “Compass” heuristics) to destination — in early
implementations of our model, some vehicles were endlessly
running up and down the same portion of road and were
making a U-turn at both ends, hence never reaching their
destinations. To force these vehicles to choose their first best
angle in the end of their path to destination, an attraction
zone is introduced: when close enough (e.g., one block) to
its destination, a vehicle switches from “Ant” or “No Ant”
heuristics (possible second best angle) to “Compass” heuristics
(no second best angle), hence defining a validity time period
for those two heuristics.

C. V2V communication

The performance of the V2V communication largely de-
pends on the wireless link quality as well as on the perfor-
mance of the communication protocols, especially medium
access control (MAC). In this subsection, we model the V2V
communications performance in an urban road scenario by
considering both the signal propagation and MAC.

1) Signal propagation in urban environments: A number of
path loss models, including two-ray ground reflection (TRG),

and two-ray interference (TRI), are developed to approximate
radio signal quality. In [2], the applicability of the models
is studied for vehicular communications and it is shown that
TRI provides better estimation than TRG (which is more
commonly used). In realistic road environments, the quality
of the link, i.e., signal quality, is largely affected by the
surrounding objects (e.g., buildings), which results in signal
blockage and/or multi-path fading effects. This may result in
that the TRI and TRG models, where only 2 rays are taken into
account, are not appropriate in urban road scenarios. Motivated
by this, we first study the applicability of TRG and TRI to an
intersection road scenario by comparing the models to results
of the ray-tracing model for the IEEE 802.11p system for
10 MHz bandwidth and 20 dBm of transmission power [9].
TRG calculates the signal quality using free-space model for
near distances and two-ray model far distances:

Ltrg[dB] =

{
Lfs = 20log10(4π dλ ), if d ≤ dc
Ltr = 20log10( d2

hthr
), otherwise

(1)

Here, d is the distance between the transmitter and the receiver,
λ is the wave length, and ht and hr are the antenna heights
of the transmitter and receiver, respectively. dc is the extent of
the Fresnel zone dc = 4πhthr/λ.
The TRI model takes account of the phase difference, ϕ, of
the two interfering rays:

Ltri[dB] = 20log10(4π dλ |1 + Γ⊥e
iϕ|). (2)

Here Γ⊥ and ϕ are the reflection coefficient. The reflection
coefficient and the phase difference can be found as

Γ⊥ = sinϑ−
√
εr−cos2ϑ

sinϑ+
√
εr−cos2ϑ

, ϕ = 2π
dlos−dref

λ .

where, εr is the reflectivity coefficient of the material and ϑ is
the incidence angle, which can be easily calculated based on
the antenna heights and the distance (d).
The ray-tracing estimation is made for an intersection road
scenario assuming that tall buildings are at each corner (see
Fig. 2). The roads have 1-lane per-direction and the width of
the lane is 3 meters. The receive powers at the nodes V 2 and
V 3, which are 15 m and 30 m from the junction respectively,
are calculated for signals emitted from V 1. As illustrated in
the figure, V 1 and V 2 are on the same road, which crosses
with tha tof V 3.
Figure 3 compares the models. Despite only 2 rays are taken
into account, TRG and TRI can roughly estimate the signal
power at the receiver that is on the same road as the transmitter
(V 2). The receive power characteristic at V 3, on the other
hand, is largely different, drops quickly below the receive
threshold of 6 Mbps coding rate (which is the typical setting
for safety applications) as soon as the distance of V 1 from the
junction is larger than 10 meters, obviously due to the signal
blockage. Our results indicate that the receive signal power
can be estimated by the TRG or TRI models for vehicles
which are on the same road of the transmitter, and it is difficult
to expect communications between vehicles on crossing roads
unless the distance to the junction is very small.

2) MAC model: As mentioned earlier, ETSI defined the
CAM frames for periodical information exchange between
vehicles and infrastructure allowing the road users to know
the existence and the state of each other. We believe that the
CAM frames can indeed serve for path planning applications.
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Fig. 3. Receive signal strengths at V2 and V3 from V1 are calculated using
ray-tracing, TRG, and TRI models.
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Fig. 4. The MAC protocol behaviour is modelled using Markov chain.

This subsection presents a simple MAC model to characterize
the CAM delivery performance between vehicles. Since we
consider only 1 type of information traffic and CAMs are
broadcast packets, it is enough to express the protocol’s
behavior by a 1 dimensional Markov chain as illustrated in
Fig. 3. Note that the Markov-chain is built for the saturated
channel condition, but we will later extend the model for non-
saturated cases. The state b(i) of the Markov chain represents
the contention window countdown states. pk is the channel
blocking probability, i.e., the probability of channel being busy
due to activities at the nodes other than the tagged node (i.e.,
the node which is the subject to the Markov chain) and W
is minimum contention window size for the AC. Solving the
Markov chain, i.e.,

∑W−1
i=0 bi=1, the channel access probability

is found as

τs = b(0) =

[
1 +

W − 1

2(1− pk)

]−1
. (3)

The channel access probability for general channel condi-
tions can be formulated as:

τ = q × τs, (4)

where q is the probability of a pending packet at the node.
Since message generation can be modelled by the Poisson
process, the probability of a pending packet is

q = 1− exp (−λYs) . (5)

Here, λ is the frame generation rate, Ys is the average channel
service time. Letting T be the time required for a transmission
of a frame (including the arbitrary inter-frame space, AIFS),
and σ be the slot time, the average channel service time is

Ys = pbT + (1− pb)σ, (6)

where pb is the probability of busy channel. The probabilities
of busy channel and channel blocking events, pb and pk, can be

expressed by the number of transmission nodes in the sensing
range.

pb = 1− (1− τ)N , pk = 1− (1− τ)N−1 (7)

Finally the probability of successful reception of a given CAM
frame at a given receiver is calculated as

Ps = (1− τ)N−1. (8)

As it can be easily seen in Eq. (8), the current model takes
into account the impact of packet collisions. Although the
model should be extended to take the other effects (e.g., hidden
terminal) into account, due to its simplicity, we decide to not
extend the model for the current paper. Finally, the model is
solved by iterative calculation using Eqs. (3) – (8).

III. EXPERIMENTS

Experiments with the model of section II were performed
in simulation using the NetLogo software environment [10],
a graphical multiple-agent simulation tool — real experiments
with hundreds of automated intelligent vehicles seem impos-
sible nowadays. We chose to use NetLogo for two reasons:
1) it is a multi-agent simulation tool, and hence it naturally
fits for investigations of the behaviours of vehicle-agents 2)
although the network simulators including NS3 and OMNET
are more popular in the field of communications, due to their
packet-level processing, they are extremely time costly for a
system with hundreds and thousands of nodes; in contrast,
NetLogo is based on models and thus allows simulations
of the fundamental communications characteristics in large-
scale systems. Figure 1 illustrates the road scenario, where the
distance between 2 parallel roads is assumed to be 200 meters.
One simulation runs up to time tick 10000.

We investigated the performances of the ”No-ant” and
”Ant” behaviors, when the vehicles 1) do not communicate,
2) have a complete set of information about all other vehi-
cles (ideal communication, i.e., zero communication error),
and 3) communicate following the IEEE 802.11p technology
(realistic communication). The “realistic” communication is
implemented following the PHY (signal propagation) and
MAC models developed in the previous section. Specifically,
having the 6 Mbps coding rate in mind, the receive and carrier
sense threshold are set to -82 and -94 dBm, respectively.
Applying the TRG model, we get 500 of transmission range
and 800 meters of sensing range. Therefore, vehicles on the
same road can communicate and are in the sensing range of
each other if the distance is within the above mentioned values.
Without much loss of generality, we assume that vehicles on
crossing roads are within each others transmission range if they
are in the intersection area. In the experiments, the individual
vehicles behave following a finite state automaton model
(see Section II) and broadcast CAM messages (200 Bytes) in
every 100 ms. The success probability for a CAM message
from a given vehicle is calculated for other vehicles in the
transmission range following the MAC model (Eqs. (3) – (8)).
It should be noted that because the width/height of the actual
topology is smaller than double of the interference range, for
accuracy of interference calculation, the roads are virtually
extended containing ”virtual” vehicles, with the equal density
to that of the corresponding actual road.



A. Communications impact

Figure 5 compares the standard deviation of the number of
vehicles on the individual streets.

We observe that in the “ideal” communication, the ant
strategy creates extremely biased vehicle distribution (e.g.,
most of vehicles are in the same street), while no-ant strategy
shows more balanced road usage. This is expected because
in “ant” strategy, vehicles are attracted to other vehicles, and
hence create congested roads. In contrast, in no-ant strategy,
the vehicles try to take the scarce roads, creating a situation,
where there is neither too congested nor too scarce road.

In the case of realistic communication, while STD value
is again larger for “ant” than for “no-ant”, the difference
is small, showing that both the strategies fail to show the
collective behavior as they intend to. This indicates that the
collective behavior can be very different from the “expected”
behavior, if there are communication errors. Figure 6 compares
the average success probability of realistic communication for
ant and no-ant cases. The results are obvious for the point
that the success probability degrades with the increase of the
number of vehicles (the increase of ”N” in Eq. (8) results
in degradation of the success probability). Moreover, it is
expected that since “ant” behavior creates congested roads, the
communication error is more severe in “ant” case compared
to “no-ant” case. However, as can be seen in Fig. 6, while
the success probability is better for “no-ant”, the difference
is very small. Figure. 5 explains the reason. As mentioned
before, due to communication errors, the “ant” and “no-ant”
strategies do not show their expected behaviors (i.e., the one
in the “ideal” communication). Hence the vehicle distribution
is not too biased for “ant” case, consequently ”N” in Eq. (8)
is not very different for “ant” and “no-ant” cases.
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Fig. 5. Comparison of STD of the number of vehicles on the individual
streets.

B. Emergent behaviors

For each simulation, at each time tick, the average of
the instantaneous speed towards destination (in patch/tick)
of each vehicle is measured. This speed is the manhattan
distance (including the circular/wrapped environment) between
the previous goal location (or initial location, at time tick =
0) and the current one, divided by the number of time ticks
elapsed for a specific vehicle to reach these these two goal
locations. Each vehicle updates its speed-towards-destination
each time it has reached its destination.
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For each simulation (each point in Fig. 7 and in Fig. 8),
we observe stabilization of the measured speed-towards-
destination to a specific value, after a sharp increase in the
beginning (lasting approximately 2 to 3000 time ticks). To
avoid this increase and compare stable values only, we plot
the mean of values over the last 6000 time ticks among 10000
(see Fig. 7), leaving 4000 ticks for passing this increase, and
the last value, at time tick 10000 (see Fig. 8). (Note that each
point of the results represent the performance achieved from
one simulation run, 10000 ticks.)
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Fig. 7 and 8 suggest that: (1) Communication’s impact



is large for the performance of the emergent behaviour, i.e.,
No-Communication gives the worst speed-towards-destination,
vehicles boldly following their path to destination without
communicating is worse than any other path-finding heuristics
with communication. (2) When communication is ideal, the
No-Ant behaviour outperforms the Ant one, i.e., when there
is a choice, fleeing traffic leads to higher speed-towards-
destination than following traffic. (3) When communication
is realistic, the difference between the No-Ant behaviours is
smaller with regards to the ideal case, but the Ant heuristics
behaves slightly better for a large number of cars.

IV. RELATED WORK

Much effort has been made to study the applicability of
the IEEE 802.11p to the ITS applications. The authors of [2]
compared the TRI and TRG models to experimental results,
and concluded that while TRI is computationally expensive it
fits well to the signal propagation characteristics in vehicular
environments. The focus of our work is in urban scenarios
and it is not clear if the TRG and TRI, which take account
of only 2 rays, can be be used. To this reason, we compared
the models to ray-tracing results, and showed that the models
can be used for vehicles that are on the same street. Due to its
simplicity, we chose TRG for our simulations. A large number
of work have been made to model the MAC for wireless
communications. Bianchi made the pioneering work to model
the Distributed Coordination Function using a 2D Markov
chain. Ma et al. presented a 1D Markov chain to describe
the broadcast throughput, delay, and packet reception ratio by
taking channel freezing into account. Our model is similar to
that presented in [3], except the channel blocking effect is
considered.

In the context of automated driving, the authors of [6]
studied how the penetration rate of communication enabled
vehicles improves the braking effort of individual vehicles.
Sakaguchi et al. [4] defined communications protocol for
inter and intra platoons for safe automated platooning control.
The authors of [11] define high level definition of message
exchange between vehicles and supervisor (infrastructure) that
are required from trajectory planning in crossroads.

Several authors have studied communication under the
multiple agent systems (MAS) paradigm [12] [13]. However
they define communication protocols for natural language per
se (speech act), and ignore the physical sending/receiving of
messages. Our work is different from the previous efforts in
the points that 1) we study the applicability of the standardized
technology for automated driving especially route planning of
automated vehicles 2) we showed how realistic communica-
tions perform in comparison to the ”ideal” cases, which are
often assumed in majority of work in the context of automated
driving.

V. CONCLUSION

In this paper, we studied the emergent traffic performances
of several hundreds uniform vehicles as a function of commu-
nication modes and dynamic path-finding heuristics (straight-
towards-destination, towards-more-traffic “Ant”, towards-less-
traffic “No Ant”) in a urban (Manhattan-like, wrapped/circular)
environment. An implementation of the model using NetLogo

multiple agent simulation software [10] suggests that V2V
communication and dynamic path-finding heuristics lead to
better emergent average speed (i.e., global traffic with better
performances) than no communication (i.e., vehicles following
their compass to destination only); and that, whenever there is
a secondary path in an urban environment, fleeing from traffic
leads to better global performances than following traffic.

Our future work includes an extended MAC model that
takes account of the hidden terminal and capture effects.
For the aspect of the vehicles’ behaviour, we will include
the agent/group/role MAS paradigm (e.g., using the MadKit
software [14]) to: (1) separate vehicles into different behavioral
groups, each group having its own heuristics (e.g., taxi, bus,
car), instead of having all vehicles sharing the same behav-
ior/heuristics; (2) change the currently unique global behavior
of the infrastructure to measure the resistance of intelligent
vehicles to perturbation.
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