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An Ontology to Decide on Respect or Relaxation of 
Traffic Rules in Unusual Situations for Autonomous 

Vehicle Assistance 

Abstract. Traffic may exhibit practical situations in which relaxation of traffic 
regulation, though illegal, might be tolerated, e.g., if a truck unloads furniture 
along a continuous line in front of an automated vehicle. In this paper, we pro-
pose a discrete, symbolic, high level representation of automated vehicles, other 
vehicles and infrastructure, in order to decide on respect/relaxation of traffic 
regulation in unusual situations (i.e., situations not planned for by the traffic 
regulation). This model, aimed at being embedded into an automated vehicle, is 
based on an ontology and uses inference rules to induce the next discrete mo-
tion of an automated vehicle, often respecting traffic rules, and sometimes re-
laxing them. Experiments in simulation, using OWL and SWRL, exhibit per-
formances compatible with adding a reasoning component into the perception / 
planning / control cycle. 

Keywords: Knowledge representation, Ontology, Intelligent Transportation 
Systems, Traffic regulation 

1 Introduction 

There is a large body of research dedicated to assisting in vehicle’s driver (Advanced 
Driver Assistance Systems, or ADAS), or to autonomously driving vehicles (e.g., for 
the DARPA challenge [18]). The final purpose of this work is to integrate computer-
driven vehicles into regularly human-driven vehicles flow, as a first step towards 
replacing human-driven vehicles by computer-driven ones. The advantages of this 
automated approach would be more efficient surface transportation and increased 
safety [15]. However, one century of transportation via human-driven vehicles has led 
to traffic regulation, aiming at both circulation enablement and safety [6]. As a conse-
quence, vehicles must respect traffic regulations, whether the vehicle is driven by a 
human or by a computer. For example, vehicles are supposed to circulate on roadways 
and not on sidewalks [8]. Or, continuous lines must not be crossed (article 26.1 [6]). 

 
However, unusual traffic situations might occur, in which traffic regulation can 

paradoxically be relaxed for practical concerns. For example, if a truck is unexpected-
ly stopped on the roadway unloading furniture, an acceptable behavior of cars arriving 
behind it is to safely overtake after some reasonable time spent waiting, despite a 
continuous line (see Fig. 1); Or, if a vehicle is stopped on the roadway with an engine 
problem, the same safe overtaking behavior might be acceptable for arriving cars as 
well. Many similar examples of traffic rules relaxation can be taken from every driv-
er’s experience, in which not respecting traffic rules might be tolerated because of 
unusual traffic situations (e.g., because of a blocked roadway). 



 

Fig. 1. Situation in which a truck Truck1 is stopped on the roadway unloading furniture, in 
front of an arriving automated vehicle CyberCar1 along a continuous line. Will the automated 
vehicle overtake the truck (case 1), stop and wait (case 2), use the sidewalk (case 3), or back up 
(case 4)? 

Reasoning on traffic regulations themselves and their applicability to practical traffic 
situations is needed indeed. We propose to represent the knowledge necessary to han-
dle such unusual situations, at the border between general traffic legality and tempo-
rary traffic illegality. Our long term goal is to embed this model and reasoning into 
automated vehicles (e.g., CyberCars [7]) in order for them not to stay stuck in such 
unusual situations (previous experiments with a CyBus in the city of La Rochelle on 
the CityMobil project in Nov. 2011 led to such blockages), but to take the lead in such 
unusual situations, escape from them and finally keep circulating, e.g., despite 
blocked roadways. 

2 Model 

2.1 Vehicle and traffic representations 

An interesting approach towards representing traffic is vehicular ad hoc networks 
(VANET), e.g., [16] [17]. 

In this model, each road is represented as a queue and a vehicle is represented as a 
packet in one queue. Then control laws on the volume of this queue are set in order to 



observe less global congestion of the traffic distributed over this network [17]. Other 
models in this macroscopic view represent the vehicle level by a state automaton [16], 
hence enabling to describe some compiled form of reasoning inside an automated 
vehicle. 

 
Other models, less global than those above and more focused on the automated ve-

hicle, explicitly introduce reasoning inside each automated vehicle [3] [14] [20]. In 
these models, each automated vehicles embeds (in simulation) an ontology, to de-
scribe static knowledge, and inference rules, to represent dynamic knowledge (reason-
ing) over this static representation. With such additional representational and reason-
ing capabilities, automated vehicles are able (for example) to infer to yield right of 
way at complex intersections for every vehicle to pass safely [14] [20], or to infer to 
free the leftmost lane on highways for emergency vehicles to pass safely [3]. Poten-
tially problematic situations can then be “solved” by reasoning. 

 
 We have to make the following assumptions for our approach to hold: (i) 

there is a device in each vehicle which is capable of communicating with the other 
vehicles, (ii) each vehicle reasons on self-perceived and received information before 
taking decision on the action to perform next, and (iii) reasoning is readily performed 
by an automated vehicle, i.e., without dooming its own perception, path-planning and 
control algorithms. The former includes the whole domain of vehicle/infrastructure 
communication (V2V, V2I, V2X). The latter probably is the stronger assumption, 
since the larger the representation, the slower the reasoning (the complexity of these 
algorithms is exponential in the worst case, due to the general combinatorial explo-
sion entailed by using such symbolic representations). 

 
Software architectures, organizing software components along their response time, 

have been proposed in order to integrate such computational costly component into 
other components connected to the outside environment of the robot/vehicle [1] [5] 
[9] [12]. 

 
 In order for the automated vehicle to relax traffic regulations in specific local 

unusual situations, we keep the principle of the approaches [3] [14] [20] (and there-
fore their assumptions) and define dedicated ontology and inference rules. 

2.2 Ontologies 

An ontology is a specification of a formalization of a domain of knowledge [11], i.e., 
a representation in a formal language of concepts completely describing a specific 
knowledge domain (e.g., traffic regulation, traffic infrastructure, automated vehicle). 
It is composed on one side of concepts, roles/properties and axioms (together forming 
a terminological box, or TBox) and, on the other side, of individuals and relations 
among them (together forming assertional box, or ABox). 

 



Importantly, when the truth value of a term is not specified in a given ontology, it 
is assumed to be unknown (open world assumption), as opposed to other scientific 
domains where the same term would be assumed to be known and even false (closed 
world assumption, e.g., in task planning [10]). 

 
Tools are available for creating/editing an ontology in OWL (Ontology Web Lan-

guage), e.g., PROTÉGÉ [19], SWOOP [21] among others.  
 
As a first step, the proposed ontology (see Fig. 2) is built not by analyzing a corpus 

of texts, but by interviewing experienced drivers (“experienced” meaning here “used 
to unusual situations”), the subtree rooted at the RoadNetwork class being inspired by 
[20] (a directed graph, with vertices being road intersections and edges being lanes). 

 

 

Fig. 2. All classes of the ontology, sorted along the “is-a” relation, as shown by GraphWiz 

2.3 Perception / path-planning / control 

The main assumption for our approach to hold is discreteness: We assume that the 
motion of an automated vehicle is discrete, i.e., decomposable into separated elemen-
tary motions; And we assume that time is discretized by time steps, i.e., a decision is 
made every time tick, and stays the same between two successive time ticks (separat-
ed time segments). Under the two previous assumptions, we propose a symbolic deci-



sion model to compute which next motion the automated vehicle should execute, and 
this with regards to traffic rules.  
 

The traditional computing cycle for ITS is composed of perception, then path plan-
ning, then control [15]. Perception is the operation of mapping signals from the vehi-
cle’s sensors to atomic percepts, e.g., the automated vehicle perceives a car in front of 
it. Path planning is the operation of computing a collision-free trajectory for a more or 
less far future given known obstacles, e.g., finding a trajectory through an intersection 
that leads to the opposite roadway while avoiding all other vehicles. And control is 
the operation of sending the right voltage to the vehicle’s actuators, for the vehicle to 
move while following a planned trajectory, e.g., overtaking using a Bezier curve. 

 
We propose to add an operation to this cycle, between the perception and the path 

planning module: reasoning, considered as the operation of deciding which symbolic 
action to perform next among a set of symbolic actions which might be taken by the 
automated vehicle. That is, reasoning is based on recognized percepts from the per-
ception operation and produces goal locations, for which the path planning operation 
will produce a path. For example, facing the situation described in Section I the auto-
mated vehicle could decide to stop behind the unloading truck (case 2 in Fig. 1), over-
take it (case 1), run on the sidewalk (case 3), or back up (case 4). Choosing among 
these “stop”, “overtake”, “run on sidewalk” or “back up” actions is the result of the 
reasoning operation. 

 
However, a major problem with adding this reasoning operation to this cycle is 

complexity issues: in the worst case this reasoning operation produces a solution in an 
amount of time which is an exponential function of one of the problem’s data dimen-
sions (unless P = NP). In the worst case, the proposed perception / reasoning / plan-
ning / control cycle could be stopped in practice inside the reasoning operation, the 
vehicle itself being stuck, hence leading to unacceptable safety problems. Therefore, 
we limit the reasoning operation to problems with fast solutions: in our case making 
inferences in a Description Logic (DL). 

2.4 Representation of illegality 

Traffic rules (see [8] for France and [6] for an international convention) may be 
represented by several means. For example, the rule stating that vehicles must circu-
late on roadways except in case of absolute emergency (see section R412-7 in [8]), 
might entail to represent roadways as a graph: vertices are intersections, edges are 
roadways [20]. In this case, the above rule is implicitly encoded, since there is no way 
to represent a vehicle’s location except into this graph --- therefore vehicles circulate 
on roadways, as dictated by this traffic rule. 

 
Now traffic rules may be represented in other ways. For example, one general way 

to represent traffic rules is to say that a vehicle must not execute any illegal motion. 
This would be written in SWRL as: 



 
Motion(?m), isIllegal(?m) 

-> not(isExecutable(?m))      (1) 

 
That is, if motion ?m is illegal, then ?m cannot be executed (the automated vehicle 

has to select one specific motion among the set of executables ones, excluding the 
unexecutable ones). Unfortunately, there are several problems with this representa-
tion: 

 
A. The class isIllegal represents the result of the application of traffic rules to a 

specific motion ?m. This entails that (i) the vehicle’s motions are represented 
in a more detailed way, e.g., motion ?m could be “changing from lane ?l1 to 
lane ?l2”; and (ii) the whole body of traffic rules is represented as concluding 
onto the mutually excluding classes isIllegal or isLegal. 

B. Negation cannot be used in the right-hand side of an SWRL inference rule (the 
only way in SWRL to encode the negation of a property in the right-hand side 
of a SWRL rule is to state a negated property “isNotX(?x)” and to restrict the 
cardinality of variable ?x in the left-hand side). So the legality aspect of a mo-
tion should only conclude on executable motions, not on unexecutable ones. 
Taking the contrapositive of the previous inference rule makes no computa-
tional sense either. 

 
The representation that we propose is to use inference rules which conclude on the 

executability of a motion of the automated vehicle. Without including legal aspects, 
the inference rule concluding on the motion to execute is the following: 

 
Car(?c), CurrentSituation(?c, ?s) 

-> hasNextMotion(?c, ?m)      (2) 

 
That is, given the current situation ?s of vehicle ?c, the next motion of the vehicle is 

?m. But now, we must introduce the legal/illegal aspect of this motion ?m, which 
leads to the following inference rule. 

 
Car(?c), CurrentSituation(?c, ?s), isLegal(?m) 

-> hasNextMotion(?c, ?m)      (3) 

 
That is, we added an extra term to the left-hand side of the inference rule, forcing 

the considered motion ?m to be legal. As a consequence, all inferred motions ?m re-
spect traffic rules --- this is the regular case. Now, we aim at representing unusual 
situations, in which traffic rules may be relaxed under some circumstances, as de-
scribed in section 1. This leads to the following additional inference rule. 

 
Car(?c), CurrentSituation(?c, ?s), isIllegal(?m), C 

-> hasNextMotion(?c, ?m)      (4) 

 



That is, in addition to inference rule 3: even if the motion ?m is illegal, but if gener-
ic condition C holds, then the motion ?m can be executed anyway, i.e., rule 3 cannot 
conclude on motion ?m because of its illegality. Therefore an automated vehicle can 
indeed relax traffic rules (i.e., perform illegal motions) under some generic condition 
(noted C). Inference rule 4 may be considered as an exception of rule 3 under generic 
condition C --- rule 3 being the regular case. 

 
Generic condition C states under which conditions an illegal motion can be per-

formed by the automated vehicle and thus is of major importance. For drivers, the 
domain of cognitive psychology brings mechanisms with which drivers are aware of a 
traffic situation [2] but to our knowledge there is no result in that domain regarding 
relaxation of traffic rules by drivers in unusual situations. For example, in the situa-
tion of Fig. 1, we believe that every driver needs some time to solve the conflict be-
tween respecting traffic rules (i.e., staying blocked behind the truck unloading furni-
ture on the roadway because of a continuous line, see case 2 of Fig. 1) and overtaking 
when the opposite lane is clear from other vehicles (i.e., safely crossing the continu-
ous line, see case 1 of Fig. 1). This time probably also depends on many other factors 
such as the level of tiredness of the driver, the level of alcohol in his blood, etc. Fac-
ing this complexity, we propose to model generic condition C by a time out: when the 
time out is still running, we assume that the vehicle’s state is labeled “Waiting” and 
the automated vehicle keeps being stopped; And when the time out has expired, we 
assume that the vehicle’s state is labeled “Passing” and the automated vehicle can 
move again despite interdictions --- the threshold itself on elapsed time needing more 
experiments to be set. 

2.5 Application 

In order to represent case 1 of the situation depicted in Fig. 1, the inference rule is 
the following. 

 
1. Lane(?l1), Lane(?l2), CrossableZone(?s), 

2. Car(?a), Car(?b), 

3. isAfter(?a, ?b), 

4. hasBesides(?l1, ?s), hasBesides(?l2, ?s), 

5. hasMotion(?a, Stopped), 

6. isOn(?a, ?l1), isOn(?b, ?l1),  DifferentFrom (?l1, ?l2) 

7. isClear(?l2), 

8.    hasInternalState(?a, Passing), 

9. -> isNextOn(?a, ?l2), 

10.   hasNextMotion(?a, Forward)     (5) 

 
That is, the automated vehicle ?a is stopped on lane ?l1 behind vehicle ?b which is 

stopped too on the same lane; There is a continuous line ?s besides lanes ?l1 and ?l2; 
If lane ?l2 is clear from other vehicles and the time out has expired (i.e., the internal 



state of vehicle ?a is labeled “Passing”), then vehicle ?a passes onto the opposite lane 
?l2 and overtakes vehicle ?b. 

 
The previous inference rule 4 can be read from the inference rule 5 with the follow-

ing equivalences: 
• Lines 1 and 4 represent the illegality of the motion from lane ?l1 to opposite 

lane ?l2 because of the continuous line ?s in between. This can be formulat-
ed in inference rule 4 terms as:  

 
Lane( ?l1), Lane( ?l2), CrossableZone( ?s), 

 hasBesides( ?l1, ?s), hasBesides( ?l2, ?s) 

 -> isIllegal(?l1, ?l2) 

 
• The second term of line 2, line 3 and line 6 represent the current situation of 

vehicle ?a --- hence are equivalent to the term CurrentSituation(?a, ?s) of 
inference rule 4. 

• Lines 7 and 8 (elapsed time out and clearness of the opposite lane) represent 
the generic condition C of inference rule 4. 

3 Experiments 

The ontology and inference rules are tested on simulated cases, we describe 2 of them 
as illustration. The examples are computed together by the reasoner PELLET in 
499ms on a 4-core CPU at 2GHz using 4Gb RAM. 

3.1 Case 1 of Fig. 1 

Here are the properties inferred for the individual CyberCar1 before individual Truck1, 
which is stopped on individual Lane1 separated by opposite individual Lane2 by a 
continuous line: 

 
isNextOn(Lane2) 
hasNextMotion(Forward) 
hasMotion(Stopped) 
iaAfter(Truck1) 
 
The latter two properties correspond to the current time step, inference rules (other 

than 5 and 6) make completion of the current situation. They state that, since the indi-
vidual Truck1 is stopped on individual Lane1, and since the individual CyberCar1 is 
before individual Truck1, then the inverse property holds (the property isAfter is the 
inverse of the property isBefore) and the current motion of the individual CyberCar1 is 
Stopped (avoiding collision with individual Truck1). The former two properties are 
inferred by the rule 5 above, and state that the individual CyberCar1 will break the 



traffic regulation at the next time step and overtake the individual Truck1 by passing 
onto individual Lane2.  

3.2 Case 3 of Fig. 1 

As above, an individual CyberCar2 is before an individual Truck2, on an individual 
Lane3, which current motion is individual Stopped. But this time, there is no opposite 
individual Lane4 adjacent to Lane3, but an individual Sidewalk3 along it. Here are the 
properties inferred for the individual CyberCar2: 

 
isNextOn(Sidewalk3) 

hasNextMotion(Forward) 

hasMotion(Stopped) 

isAfter(Truck2) 

 
The latter two properties result from inference rules for completion of the current 

situation and inverse properties, as above. But this time there is no continuous line 
along individual Lane3 but a sidewalk: the individual CyberCar2 will move on it next, 
due to the inference rule 6 above, hence will perform an illegal motion because of the 
unusual aspect of the situation at hand. As previously, changing the property has-

InternalState of individual CyberCar2 to individual Waiting instead of individual 
Passing would have cancelled the former two inferred properties (time out not expired 
yet, leading the individual CyberCar2 to keep waiting behind individual Truck2 at the 
next time step). 

Reasoners not only spend time on making inferences but also on checking class 
consistency (making sure that every class can actually have individuals, i.e., there are 
no inconsistent static constraints on classes). Other DL reasoners (FACT++, 
RACERPRO, etc) may be compared to PELLET to improve performances through 
software engineering (e.g., see benchmarks in [4]). 

4 Related work 

Introducing a reasoning operation into the perception / planning / control cycle of 
Robotics has led to several software architectures, e.g., [1] [5] [9] [12]. A notion of 
“levels” is proposed, but authors disagree on their roles: one (slower) level subsumes 
the lower (faster) one [5], 3 levels with specific roles [1] [9], or 2 levels with no in-
termediate control level [12]. However, in our practical cases, the reasoning operation 
provides a result quickly enough (see section 3) to be integrated into the perception / 
planning / control cycle, so none of these software architectures is needed so far. (In 
software architectures terms, our model requires a single level only.) 

Vehicular ad hoc networks (VANET) are used for spatially distributing traffic in a 
network [16] [17]. Traffic density predictions can be computed using a state-
automaton describing every vehicle’s decision [17]. Each road is represented as a 
queue (with a maximum value denoting congestion) and each vehicle is represented 



as a packet in a queue; Then a law (e.g., adaptive proportional integral controller [16]) 
controls the traffic volume of each queue, for lesser congestion to be globally ob-
served [16]. However, in these approaches, the decisional autonomy of each vehicle is 
limited, e.g., reduced to a state automaton in the best case [17]. We believe that em-
bedding an ontology with inference rules inside each automated vehicle leads to a 
higher decisional power (at a higher computational cost, though), as exhibited by the 
inference rules presented above, which lead to a “smarter” behavior of  the automated 
vehicle in the end (after all, even the most experienced human driver can be mathe-
matically reduced to the instantaneous speed vector and location of his vehicle). 

More interestingly, other approaches take advantage of ontologies to represent 
higher forms of reasoning inside automated vehicles [3] [14] [20]. Intersections and 
their surrounding infrastructure are represented in an ontology, and inference rules are 
defined in order to determine which vehicle can pass through the intersection accord-
ing to traffic regulation (e.g., yielding right of way) [14] [20]. Or, an ontology is em-
bedded into every vehicle in order to decide on its next motion, as a reaction to an 
incoming emergency vehicle (e.g., freeing the leftmost lane on highways) [3]. How-
ever, even if these approaches are based on an ontology and on inference rules (as is 
ours), their goal is to respect traffic regulation (even for [3]), which may lead in prac-
tice to blocked situations, examples of which are described in section 1. Our approach 
aims at sometimes relaxing them due to practical reasons (elucidating these reasons is 
of interest to us, this is what we call the unusual aspect of situations). A point com-
mon to these approaches, though, seems to be the reasonable performances in simula-
tion, but only for limited representation of the environment of the automated vehicle 
(our approach confirms this point). 

5 Conclusion 

If safety dictates that traffic regulation must be respected by all vehicles, either 
human- or computer-driven, real traffic in real environments may exhibit practical 
cases in which breaking traffic rules might be tolerated by a vehicle, because these 
cases are indeed unusual (i.e., not planned for by traffic regulation). Facing this, we 
have presented a discrete, high-level, symbolic model (aimed at being embedded in-
side an automated vehicle) to decide on what to do next for an automated vehicle in 
such unusual but practical situations. This model is based on an ontology, the ABoxes 
of which represent a snapshot of the traffic environment, and on inference rules, rep-
resenting the reasoning performed by the automated vehicle, to decide on break-
ing/respecting traffic regulation. These inference rules all derive from a generic rule 
for traffic regulation respect (noted 3 above) and from a generic exception rule for 
traffic regulation relaxation (noted 4 above). An implementation using the OWL lan-
guage with the ontology editor PROTÉGÉ [19] and the inference rule model SWRL 
[13] with the PELLET reasoner exhibits attractive performances in simulation. 

 These performances (reasoning on a limited environment representation does 
not seem to doom perception and control) lead our future work towards porting this 
high-level symbolic model to the CyberCar platforms [5], by connecting percepts and 



goal locations to our ontology’s ABoxes, for testing on real roadways (unusual situa-
tions can be created in the private lanes of our research center) . 
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