An Ontology to Decide on Respect or Relaxation of
Traffic Rulesin Unusual Situationsfor Autonomous
Vehicle Assistance

Abstract. Traffic may exhibit practical situations in whichlaxation of traffic
regulation, though illegal, might be tolerated,.eifja truck unloads furniture
along a continuous line in front of an automateHtisle. In this paper, we pro-
pose a discrete, symbolic, high level represemtaifcautomated vehicles, other
vehicles and infrastructure, in order to deciderespect/relaxation of traffic
regulation in unusual situations (i.e., situatiomd planned for by the traffic
regulation). This model, aimed at being embeddé&alan automated vehicle, is
based on an ontology and uses inference rulesdtacénthe next discrete mo-
tion of an automated vehicle, often respectindfitratiles, and sometimes re-
laxing them. Experiments in simulation, using OWdaSWRL, exhibit per-
formances compatible with adding a reasoning corapbimto the perception /
planning / control cycle.

Keywords: Knowledge representation, Ontology, Intelligerafisportation
Systems, Traffic regulation

1 Introduction

There is a large body of research dedicated tstasgiin vehicle’'s driver (Advanced
Driver Assistance Systems, or ADAS), or to autonosty driving vehicles (e.g., for
the DARPA challenge [18]). The final purpose ofthiork is to integrate computer-
driven vehicles into regularly human-driven vetsclfow, as a first step towards
replacing human-driven vehicles by computer-driveres. The advantages of this
automated approach would be more efficient surtaaesportation and increased
safety [15]. However, one century of transportatiamhuman-driven vehicles has led
to traffic regulation, aiming at both circulationablement and safety [6]. As a conse-
quence, vehicles must respect traffic regulatioviggther the vehicle is driven by a
human or by a computer. For example, vehicles @pased to circulate on roadways
and not on sidewalks [8]. Or, continuous lines nmagtbe crossed (article 26.1 [6]).

However, unusual traffic situations might occur,vitiich traffic regulation can
paradoxically be relaxed for practical concerng. &@mple, if a truck is unexpected-
ly stopped on the roadway unloading furniture, eceptable behavior of cars arriving
behind it is to safely overtake after some reaslenéime spent waiting, despite a
continuous line (see Fig. 1); Or, if a vehicletispped on the roadway with an engine
problem, the same safe overtaking behavior mighadmeptable for arriving cars as
well. Many similar examples of traffic rules reldxa can be taken from every driv-
er's experience, in which not respecting traffiteeumight be tolerated because of
unusual traffic situations (e.g., because of ak#daoadway).
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Fig. 1. Situation in which a truclruckl is stopped on the roadway unloading furniture, in
front of an arriving automated vehidgberCarl along a continuous line. Will the automated
vehicle overtake the truck (case 1), stop and (gaie 2), use the sidewalk (case 3), or back up
(case 4)?

Reasoning on traffic regulations themselves anit gpplicability to practical traffic
situations is needed indeed. We propose to repgrésehknowledge necessary to han-
dle such unusual situations, at the border betvgesmeral traffic legality and tempo-
rary traffic illegality. Our long term goal is tarbed this model and reasoning into
automated vehicles (e.g., CyberCars [7]) in oradertfiem not to stay stuck in such
unusual situations (previous experiments with a @y the city of La Rochelle on
the CityMobil project in Nov. 2011 led to such bkages), but to take the lead in such
unusual situations, escape from them and finallgpkeirculating, e.g., despite
blocked roadways.

2 M odel

2.1 Vehicleand traffic representations

An interesting approach towards representing traffi vehicular ad hoc networks
(VANET), e.g., [16] [17].

In this model, each road is represented as a cqadi@ vehicle is represented as a
packet in one queue. Then control laws on the velofithis queue are set in order to



observe less global congestion of the traffic disted over this network [17]. Other
models in this macroscopic view represent the Velével by a state automaton [16],
hence enabling to describe some compiled form a$aoring inside an automated
vehicle.

Other models, less global than those above and fooused on the automated ve-
hicle, explicitly introduce reasoning inside eachaomated vehicle [3] [14] [20]. In
these models, each automated vehicles embedsnfinlagion) an ontology, to de-
scribe static knowledge, and inference rules, poagent dynamic knowledge (reason-
ing) over this static representation. With suchitalthl representational and reason-
ing capabilities, automated vehicles are able éfiample) to infer to yield right of
way at complex intersections for every vehicle &spsafely [14] [20], or to infer to
free the leftmost lane on highways for emergendyictes to pass safely [3]. Poten-
tially problematic situations can then be “solvéy’reasoning.

We have to make the following assumptions for approach to hold: (i)
there is a device in each vehicle which is capalbleommunicating with the other
vehicles, (ii) each vehicle reasons on self-peextiand received information before
taking decision on the action to perform next, éifgdreasoning is readily performed
by an automated vehicle, i.e., without doomingits perception, path-planning and
control algorithms. The former includes the whotaréin of vehicle/infrastructure
communication (V2V, V2I, V2X). The latter probabiy the stronger assumption,
since the larger the representation, the slowerghsoning (the complexity of these
algorithms is exponential in the worst case, du¢heogeneral combinatorial explo-
sion entailed by using such symbolic representajion

Software architectures, organizing software comptsalong their response time,
have been proposed in order to integrate such ctatipoal costly component into
other components connected to the outside envirohiwfethe robot/vehicle [1] [5]
(9] [12].

In order for the automated vehicle to relax traféégulations in specific local
unusual situations, we keep the principle of thprapches [3] [14] [20] (and there-
fore their assumptions) and define dedicated ogtoénd inference rules.

2.2 Ontologies

An ontology is a specification of a formalizatiohaodomain of knowledge [11], i.e.,
a representation in a formal language of concepisptetely describing a specific
knowledge domain (e.g., traffic regulation, traffidrastructure, automated vehicle).
It is composed on one side of concepts, roles/pti@seand axioms (together forming
a terminological box, or TBox) and, on the otheatesiof individuals and relations
among them (together forming assertional box, oo¥B



Importantly, when the truth value of a term is spécified in a given ontology, it
is assumed to be unknown (open world assumptianppgposed to other scientific

domains where the same term would be assumed tadyen and even false (closed
world assumption, e.g., in task planning [10]).

Tools are available for creating/editing an ontglag OWL (Ontology Web Lan-
guage), e.g., PROTEGE [19], SWOOP [21] among others

As a first step, the proposed ontology (see Figs Byilt not by analyzing a corpus
of texts, but by interviewing experienced drivelsxperienced” meaning here “used
to unusual situations”), the subtree rooted afRbadNetwork class being inspired by
[20] (a directed graph, with vertices being roagigsections and edges being lanes).
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Fig. 2. All classes of the ontology, sorted along tived” relation, as shown by GraphWiz

2.3 Perception / path-planning / control

The main assumption for our approach to hold isrdieness: We assume that the
motion of an automated vehicle is discrete, i.ecainposable into separated elemen-
tary motions; And we assume that time is discredtizg time steps, i.e., a decision is
made every time tick, and stays the same betweerstmcessive time ticks (separat-
ed time segments). Under the two previous assunmptive propose a symbolic deci-



sion model to compute which next motion the auteaatehicle should execute, and
this with regards to traffic rules.

The traditional computing cycle for ITS is composd#gerception, then path plan-
ning, then control [15]. Perception is the operatid mapping signals from the vehi-
cle’s sensors to atomic percepts, e.g., the autamaghicle perceives a car in front of
it. Path planning is the operation of computingHision-free trajectory for a more or
less far future given known obstacles, e.g., figdirtrajectory through an intersection
that leads to the opposite roadway while avoiditigther vehicles. And control is
the operation of sending the right voltage to thhiele’'s actuators, for the vehicle to
move while following a planned trajectory, e.g.eaaking using a Bezier curve.

We propose to add an operation to this cycle, betvibe perception and the path
planning module: reasoning, considered as the tiperaf deciding which symbolic
action to perform next among a set of symbolicaagiwhich might be taken by the
automated vehicle. That is, reasoning is basedeoognized percepts from the per-
ception operation and produces goal locationsyuich the path planning operation
will produce a path. For example, facing the sitratiescribed in Section | the auto-
mated vehicle could decide to stop behind the whitaatruck (case 2 in Fig. 1), over-
take it (case 1), run on the sidewalk (case 3hamk up (case 4). Choosing among

these “stop”, “overtake”, “run on sidewalk” or “dacp” actions is the result of the
reasoning operation.

However, a major problem with adding this reasonipgration to this cycle is
complexity issues: in the worst case this reasoopeyation produces a solution in an
amount of time which is an exponential functioroag of the problem’s data dimen-
sions (unless P = NP). In the worst case, the m@gp@erception / reasoning / plan-
ning / control cycle could be stopped in practioside the reasoning operation, the
vehicle itself being stuck, hence leading to unptadele safety problems. Therefore,
we limit the reasoning operation to problems waktfsolutions: in our case making
inferences in a Description Logic (DL).

2.4  Representation of illegality

Traffic rules (see [8] for France and [6] for aeimational convention) may be
represented by several means. For example, thestatiag that vehicles must circu-
late on roadways except in case of absolute emeygeee section R412-7 in [8]),
might entail to represent roadways as a graphicesrtare intersections, edges are
roadways [20]. In this case, the above rule is ioithf encoded, since there is no way
to represent a vehicle’s location except into treph --- therefore vehicles circulate
on roadways, as dictated by this traffic rule.

Now traffic rules may be represented in other w#ys. example, one general way
to represent traffic rules is to say that a vehiolgst not execute any illegal motion.
This would be written in SWRL as:



Motion(?m), islllegal(?m)
-> not(isExecutable(?m)) (1)

That is, if motion?m is illegal, then?’m cannot be executed (the automated vehicle
has to select one specific motion among the se&txetutables ones, excluding the
unexecutable ones). Unfortunately, there are seyeoblems with this representa-
tion:

A. The classslilegal represents the result of the application of teaffiles to a
specific motion?m. This entails that (i) the vehicle’s motions aepnesented
in a more detailed way, e.g., moti@m could be “changing from lan#&1 to
lane?2"; and (ii) the whole body of traffic rules is regzented as concluding
onto the mutually excluding classgHlegal or isLegal.

B. Negation cannot be used in the right-hand sidendWRL inference rule (the
only way in SWRL to encode the negation of a proper the right-hand side
of a SWRL rule is to state a negated propeitidtX(?x)” and to restrict the
cardinality of variable’x in the left-hand side). So the legality aspeca ofho-
tion should only conclude on executable motiong, oo unexecutable ones.
Taking the contrapositive of the previous inferemole makes no computa-
tional sense either.

The representation that we propose is to use inéereules which conclude on the
executability of a motion of the automated vehiéhthout including legal aspects,
the inference rule concluding on the motion to exeds the following:

Car(?c), CurrentSituation(?c, 7s)
-> hasNextMotion(?c, ?m) 2)

That is, given the current situatidnof vehicle?c, the next motion of the vehicle is
?m. But now, we must introduce the legall/illegal atpef this motion?m, which
leads to the following inference rule.

Car(?c), CurrentSituation(?c, ?s), isLegal(?m)
-> hasNextMotion(?c, ?m) 3)

That is, we added an extra term to the left-hadd sif the inference rule, forcing
the considered motioPm to be legal. As a consequence, all inferred metitan re-
spect traffic rules --- this is the regular casewNwe aim at representing unusual
situations, in which traffic rules may be relaxender some circumstances, as de-
scribed in section 1. This leads to the followiniglidonal inference rule.

Car(?c), CurrentSituation(?c, ?s), islllegal(?m), C
-> hasNextMotion(?c, ?m) 4)



That is, in addition to inference rule 3: everhié tmotion?m is illegal, but if gener-
ic conditionC holds, then the motioPm can be executed anyway, i.e., rule 3 cannot
conclude on motiorfm because of its illegality. Therefore an automatehicle can
indeed relax traffic rules (i.e., perform illegabtions) under some generic condition
(noted(). Inference rule 4 may be considered as an exarepfi rule 3 under generic
conditionC --- rule 3 being the regular case.

Generic conditionC states under which conditions an illegal motion b& per-
formed by the automated vehicle and thus is of maygportance. For drivers, the
domain of cognitive psychology brings mechanisnthwihich drivers are aware of a
traffic situation [2] but to our knowledge thereris result in that domain regarding
relaxation of traffic rules by drivers in unusuéblations. For example, in the situa-
tion of Fig. 1, we believe that every driver nesdsne time to solve the conflict be-
tween respecting traffic rules (i.e., staying blegkehind the truck unloading furni-
ture on the roadway because of a continuous lemcase 2 of Fig. 1) and overtaking
when the opposite lane is clear from other vehiles, safely crossing the continu-
ous line, see case 1 of Fig. 1). This time probaldp depends on many other factors
such as the level of tiredness of the driver, &well of alcohol in his blood, etc. Fac-
ing this complexity, we propose to model generiadition C by a time out: when the
time out is still running, we assume that the viehécstate is labeled “Waiting” and
the automated vehicle keeps being stopped; And wineriime out has expired, we
assume that the vehicle’s state is labeled “Passing the automated vehicle can
move again despite interdictions --- the threstitslelf on elapsed time needing more
experiments to be set.

25 Application

In order to represent case 1 of the situation degit Fig. 1, the inference rule is
the following.

Lane(?11), Lane(?12), CrossableZone(7s),

Car(?a), Car(?b),

isAfter(?a, ?b),

hasBesides(?l1, ?s), hasBesides(?12, ?s),

hasMotion(?a, Stopped),

isOn(?a, ?11), isOn(?b, ?11), DifferentFrom (?11, 712)

isClear(?12),

hasInternalState(?a, Passing),

9. ->isNextOn(?a, ?12),

10. hasNextMotion(?a, Forward) (5)

ONSNUA W R

That is, the automated vehicle is stopped on lan#&1 behind vehicle’b which is
stopped too on the same lane; There is a continlirma&s besides laned1 and?i2;
If lane 2?12 is clear from other vehicles and the time out &gsired (i.e., the internal



state of vehicl@a is labeled Passing”), then vehicle?a passes onto the opposite lane
712 and overtakes vehiché.

The previous inference rule 4 can be read fromirtfezence rule 5 with the follow-
ing equivalences:
« Lines 1 and 4 represent the illegality of the motitom lane?l1 to opposite
lane?I2 because of the continuous lifein between. This can be formulat-
ed in inference rule 4 terms as:

Lane( ?11), Lane( ?12), CrossableZone( ?s),
hasBesides( 711, ?s), hasBesides( ?12, 7s)
->islllegal(?11, ?12)

e The second term of line 2, line 3 and line 6 repnéshe current situation of
vehicle ?a --- hence are equivalent to the te@mrrentSituation(?a, ?s) of
inference rule 4.

e Lines 7 and 8 (elapsed time out and clearnesseobpiposite lane) represent
the generic conditiofi of inference rule 4.

3 Experiments

The ontology and inference rules are tested onlaied cases, we describe 2 of them
as illustration. The examples are computed togebyethe reasoner PELLET in
499ms on a 4-core CPU at 2GHz using 4Gb RAM.

31 CaselofFig. 1

Here are the properties inferred for the individGQiglerCar1 before individualTruck1,
which is stopped on individudlinel separated by opposite individuadne2 by a
continuous line:

isNextOn(Lane2)
hasNextMotion(Forward)
hasMotion(Stopped)
iaAfter(Truckl)

The latter two properties correspond to the curtieme step, inference rules (other
than 5 and 6) make completion of the current ditnafT hey state that, since the indi-
vidual Truck1 is stopped on individudlane1, and since the individuayberCarl is
before individualTruck1, then the inverse property holds (the propéwyter is the
inverse of the propertigBefore) and the current motion of the individu@lberCar1 is
Stopped (avoiding collision with individualTruck1). The former two properties are
inferred by the rule 5 above, and state that tlkvidual CyberCar1 will break the



traffic regulation at the next time step and ovetéhe individualTruckl by passing
onto individualLane2.

32 Case3o0ofFig. 1

As above, an individualyberCar2 is before an individuatruck2, on an individual
Lane3, which current motion is individuatopped. But this time, there is no opposite
individual Lane4 adjacent tdane3, but an individuakidewalk3 along it. Here are the
properties inferred for the individu@yberCar2:

isNextOn(Sidewalk3)
hasNextMotion(Forward)
hasMotion(Stopped)
isAfter(Truck2)

The latter two properties result from inferenceesufor completion of the current
situation and inverse properties, as above. Buat tihie there is no continuous line
along individualLane3 but a sidewalk: the individualyberCar2 will move on it next,
due to the inference rule 6 above, hence will perfan illegal motion because of the
unusual aspect of the situation at hand. As prelWowchanging the propertyas-
InternalState of individual CyberCar2 to individual Waiting instead of individual
Passing would have cancelled the former two inferred praps (time out not expired
yet, leading the individualyberCar2 to keep waiting behind individua@ruck2 at the
next time step).

Reasoners not only spend time on making inferebcgsalso on checking class
consistency (making sure that every class can lictuave individuals, i.e., there are
no inconsistent static constraints on classes).elOL reasoners (FACT++,
RACERPRO, etc) may be compared to PELLET to imprpggormances through
software engineering (e.g., see benchmarks in [4]).

4 Related wor k

Introducing a reasoning operation into the percepti planning / control cycle of
Robotics has led to several software architectwegs, [1] [5] [9] [12]. A notion of
“levels” is proposed, but authors disagree on tr@es: one (slower) level subsumes
the lower (faster) one [5], 3 levels with specifates [1] [9], or 2 levels with no in-
termediate control level [12]. However, in our gieal cases, the reasoning operation
provides a result quickly enough (see section 3)etantegrated into the perception /
planning / control cycle, so none of these softwanehitectures is needed so far. (In
software architectures terms, our model requirgiagle level only.)

Vehicular ad hoc networks (VANET) are used for &gt distributing traffic in a
network [16] [17]. Traffic density predictions cdme computed using a state-
automaton describing every vehicle’'s decision [IHch road is represented as a
gueue (with a maximum value denoting congestion) @xch vehicle is represented



as a packet in a queue; Then a law (e.g., adaptogortional integral controller [16])
controls the traffic volume of each queue, for éessongestion to be globally ob-
served [16]. However, in these approaches, thesibeeil autonomy of each vehicle is
limited, e.g., reduced to a state automaton inbé&t case [17]. We believe that em-
bedding an ontology with inference rules insideheaatomated vehicle leads to a
higher decisional power (at a higher computatiauat, though), as exhibited by the
inference rules presented above, which lead torafter” behavior of the automated
vehicle in the end (after all, even the most exgeréd human driver can be mathe-
matically reduced to the instantaneous speed vaabfocation of his vehicle).

More interestingly, other approaches take advantagentologies to represent
higher forms of reasoning inside automated vehif3¢4$14] [20]. Intersections and
their surrounding infrastructure are representeghiontology, and inference rules are
defined in order to determine which vehicle canspghgsough the intersection accord-
ing to traffic regulation (e.g., yielding right @fay) [14] [20]. Or, an ontology is em-
bedded into every vehicle in order to decide omést motion, as a reaction to an
incoming emergency vehicle (e.g., freeing the lefitrlane on highways) [3]. How-
ever, even if these approaches are based on alogntnd on inference rules (as is
ours), their goal is to respect traffic regulat{ewen for [3]), which may lead in prac-
tice to blocked situations, examples of which asatlibed in section 1. Our approach
aims at sometimes relaxing them due to practicdomrs (elucidating these reasons is
of interest to us, this is what we call the unusagdect of situations). A point com-
mon to these approaches, though, seems to beabenable performances in simula-
tion, but only for limited representation of thevennment of the automated vehicle
(our approach confirms this point).

5 Conclusion

If safety dictates that traffic regulation must fespected by all vehicles, either
human- or computer-driven, real traffic in real Bomments may exhibit practical
cases in which breaking traffic rules might be ttaled by a vehicle, because these
cases are indeed unusual (i.e., not planned faraffjc regulation). Facing this, we
have presented a discrete, high-level, symboliceh¢imed at being embedded in-
side an automated vehicle) to decide on what taedda for an automated vehicle in
such unusual but practical situations. This mosiélaised on an ontology, the ABoxes
of which represent a snapshot of the traffic emuinent, and on inference rules, rep-
resenting the reasoning performed by the automegddcle, to decide on break-
ing/respecting traffic regulation. These inferemakes all derive from a generic rule
for traffic regulation respect (noted 3 above) dmmm a generic exception rule for
traffic regulation relaxation (noted 4 above). Anmplementation using the OWL lan-
guage with the ontology editor PROTEGE [19] anditiference rule model SWRL
[13] with the PELLET reasoner exhibits attractiverfprmances in simulation.

These performances (reasoning on a limited enwieont representation does
not seem to doom perception and control) lead oturé work towards porting this
high-level symbolic model to the CyberCar platforidl by connecting percepts and



goal locations to our ontology’s ABoxes, for tegtion real roadways (unusual situa-
tions can be created in the private lanes of agarch center) .
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