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Abstract

Intelligent and Autonomous Unmanned Ground Vehicles
(AUGV), both for civil security and warfare domains, are
subject of growing interest from the Intelligent Transporta-
tion Systems community and from the Planning & Schedul-
ing (P&S) one. This paper presents an approach to cope with
discrete uncertainty representations of P&S problems. The
model enables statement of coordination constraints within
multiple agents. This representation is based on a discrete
confidence interval, denoting bounds around an exact (cer-
tain) value provided at planning time. Search algorithms are
also proposed, solving P&S problems of realistic size. An im-
plementation, inside the CSP-based P&S system known as
ORTAC, demonstrates that the computation time, due to this
additional uncertainty representation, is not significantly de-
graded.

Introduction
Since their introduction in the early 90s, intelligent and au-
tonomous vehicles aim at progressively replacing manually-
driven vehicles by computer-driven automated ones, in order
to prevent traffic accidents and injuries/fatalities. In general,
Intelligent Transportation Systems (ITS) cooperate to han-
dle free space and more generally road access.

But in many applications such as search and rescue, nat-
ural disaster response, or defense and security missions,
several vehicles, manned or unmanned, have to collabo-
rate to achieve a common goal. For those applications, Au-
tonomous Unmanned Ground Vehicles (AUGV) are of a par-
ticular interest for several dangerous or fastidious missions.

AUGV involve several software modules such as simul-
taneous localization and mapping (SLAM), perception, data
fusion, path planning and then control of the robotic plat-
form. Each functionality has to deal with some form of tem-
poral and spatial uncertainty while representing the envi-
ronment. In our work, we consider multiple agents (with
manned or unmanned vehicles) which traverse a topological
map and which must eventually coordinate their respective
actions via a control/command (C2) system. While manned
coordination with voice communications can be very effi-
cient within a trained team of first responders, interacting

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with AUGV can be a challenge, especially considering tem-
poral uncertainty.

The paper focuses on the Planning and Scheduling (P&S)
software modules and, more specifically, on the temporal
uncertainty resulting from the environment or from the var-
ious processing stages. These modules will be integrated in
C2 systems that coordinate the different vehicles and enable
interactions between human and AUGV. The P&S environ-
ment is named ORTAC, standing for Optimal Resource and
Technical Action Control, and has been developped for both
defense and civil security domains, even if other applications
are investigated.

The problem also involves technical actions (e.g., ob-
servations, measurements, communications) to perform on
some waypoints and must consider specific metrics such as
security, travelling distances and durations. That is, given a
graph where vertices are locations and edges are routes, the
P&S problem is to find for all agents a sequence of vertices
(or route segments) with pass-by dates on waypoints, opti-
mizing a mission cost. Once the plan defined and commu-
nicated, AUGVs must automatically manage their own tra-
jectory and follow their navigation waypoints using control
algorithms and time sequence. Drivers of manned platform
follow a path of timed waypoints provided by a C2 interface.

A classical candidate approach for this problem is, for ex-
ample, the A* algorithm (Hart, Nilsson, and Raphael 1968)
considered as a best-first search in a space of paths. Even if
A* can handle several metrics, including timing, it assumes
that there exists only one agent which traverses edges and
vertices to reach a final location. Our approach considers
constraint programming, that has been identified since the
70s (Montanari 1974) (Laurière 1978) as a powerful tool to
represent and solve combinatorial problems, or Constraint
Satisfaction Problems (CSP). Its real-world applications are
numerous, refer to (Simonin et al. 2015) to only mention a
spectacular one.

In both C2 systems and ITS, path planning for multiple
agents in a topological map can be modeled and solved us-
ing constraint programming (Guettier 2007). A CSP is com-
posed of a set of variables, their domains and algebraic con-
straints (together compsing a model), which are based on
abstracting some problem. However, due to many sources
of uncertainty, the passing date of an agent on a given ver-
tex/location in the topological map might not be precisely



known at planning time: Some form of uncertainty has to
be considered, in order to represent a lack of knowledge at
planning time.

In this paper, we propose a new representation of uncer-
tainty, based on confidence intervals, within a CSP model
representing path planning in a topological map for mul-
tiple agents with coordination. The paper is organized as
follows: The first section describes the system environment
and the application; The second section presents the basic
CSP model, representing path planning for multiple agents
in a topological map, and then a new uncertainty model; The
third section provides the implemented search strategies, and
experimental results are reported in a fourth section; The last
section relates our work to existing approaches, sums up our
contribution and gives hints for further work.

Application domain
For each agent, the P&S module must find navigation plans
and estimate passing dates, while satisfying coordination
constraints with other agents. Each mission plan is com-
posed of a set of totally ordered waypoints, for which a pass-
ing date must also be estimated. Agents plans and sched-
ules must meet an objective and obey to terrain constraints.
Global coordination between agents can be inforced by sat-
isfying logical synchronisations on waypoints. In addition,
the global mission plan should optimize a primary cost func-
tion, for instance mission duration, safety, security or ob-
servability. Without loss of generality, only mission duration
is considered in this paper, that is, minimizing the maximal
mission completion date for all agents.

Example
In Figure 1, both rescue AUGV and manned vehicules must
perform a maximal exploration of villages (red circle) in a
flooded area, looking for refugees and estimating damages.
However vehicles must progress in a synchronized way for
several operational reasons:
• Observations must be synchronized to avoid missing

refugees;
• Operators in manned vehicles would want to see AUGV

time to time in order to be able to switch to a teleoperation
mode if needed;

• Communications between vehicles have to be maintained
during mission progression.
In this scenario, search and rescue vehicles will start from

location 1, and gather in the vicinity of node 20. All nodes
circled in red have to be visited, where refugees and casu-
alties are likely to be found. However, there are strong un-
certainties concerning the time of traversal: On one hand,
the manned vehicule need to master the AUGV execution
in spite of uncertainty; On the other hand, the AUGV must
adapt to the manned vehicule pace.

Architecture
Figure (2) presents a simplified C2 system architecture for
an AUGV, with autonomous (robotic) capabilities. Building-
up the situation awareness is based on various sensory data,

Figure 1: Search and rescue mission. Topological map for
a manned vehicle and a AUGV throughout a flooded area
between the Seine and the Vanne rivers in the area of Troyes,
France. These specific vehicules, developped by SAFRAN
E&D, can be either piloted or turned instantaneously into an
AUGV.

local map and SLAM processing. These subsystems gen-
erate multiple sources of temporal and spatial uncertainty:
drift, errors and bias. Moreover, time of traversal for some
parts of the terrain is difficult to predict and is uncertain
while planning the mission (in the example, moving in shal-
low water). Vehicular communications enable exchanges of
mission plan as well as situation awareness (platform state
such as position, velocity, time and list of observed objects).
The vehicule can optionally interact with an operator or the
pilot, but interactions definition are out of the scope of this
paper. In addition to the vehicular P&S, we need a temporal
uncertainy resolver module for several reasons:

• provide to the command staff go/no go decisions on
whether the mission will continue;

• dynamically adapt the mission or trigger a replanning
event;

• provide timing worst / nominal cases to the pilot or to the
local operator;

• provide delays and arrival date estimates to other manned
vehicules or AUGVs;

• adapt the execution controler to cope with potential delays
and to maintain coordination with other vehicles.

A larger description of the tool is described in (Guet-
tier 2007) and has been widely experimented. Example of
detailed C2 system integration is described in (Guettier et
al. 2011), while some fielded experiments are reported in
(Guettier et al. 2009) (Guettier et al. 2015). The search al-
gorithm baseline for a single agent is presented in (Guettier
and Lucas 2016).



Figure 2: C2 system for optionally piloted vehicule (which
can be piloted, remotely piloted, remotely operated or fully
autonomous), with main components including P&S, com-
munication, interactions and situation awareness. In spite of
many sophisticated filtering techniques used to improve ac-
curacy (location, observations) and reduce uncertainty, situ-
ation awareness is till an active area of research.

Model-based P&S with Uncertainty
In this section, we present a CSP-based P&S system and
describe an extension to represent uncertainty.

The ORTAC P&S System
The system known as ORTAC is a model for a constraint sat-
isfaction problem to compute paths of several agents using a
directed graph, where vertices represent locations and edges
represent routes (referred to as a topological map). With
the given applications, graphs are defined during mission
preparation, by terrain analysis and situation assessment. A
path of an agent starts at a fixed initial vertex (starting loca-
tion) and ends at a fixed final vertex (ending location), and
is composed of a sequence of routes (i.e., chain of edges).
The graph is maintained on-line during mission execution,
by using fusion of sensory data (e.g., LIDAR, optronics).
The P&S system also models duration and waypoint timing
sequences, according to selected paths. Both manned and
AUGV systems respond to an operator’s (or mission com-
mander’s) demand by finding a route from a starting point to
a destination, while visiting some mandatory waypoints.

In our approach, solving the P&S problem is achieved
using Constraint Programming (CP) techniques, under a
model-based development approach. CP is a competitive
approach to solve such problems, providing completeness
and optimality guarantees. With CP, a declarative formula-
tion of the constraints to satisfy is provided which is decou-
pled from the search algorithms, so that both of them can be
worked out independently. Both CSP formulation and search

Figure 3: Operational vehicular C2 system integrating the
ORTAC planner and displaying solutions. Agents paths are
displayed in different colours to reach the central target.
Plans are georeferenced on both satellite views and maps.
The C2 systems is interfaced with inertial measurement
units in order to provide locations with minimal uncertainty,
even in GPS denied environments.

algorithms are implemented with the CLP(FD) domain of
SICStus Prolog library (Carlsson 2015). It uses the state-of-
the-art in discrete constrained optimisation techniques and
Arc Consistency-5 (such as AC-5) for constraint propaga-
tion, managed by CLP(FD) predicates, as well as global con-
straints implementation.

Since more than one agent can be represented in OR-
TAC, the model also represents coordination among agents
at given vertices of their respective paths. This is performed
by expressing constraints relating two different agents on
two different vertices: For instance, an agent must pass at
a location before another agent passes at another location.
Forced inclusion/exclusion of vertices/edges in a path of an
agent can also be represented by additional constraints.

For each agent, the basic model relies on a graph where
edges and nodes represent respectively ground mobility and
accessible waypoints:

• a {0, 1} variable Tv on each vertex v, representing the fact
that this vertex is included into agent path, i.e., the agent
transits via vertex v;

• a {0, 1} variable ϕv,v′ on each edge v, v′ representing the
fact that the edge also belongs to the path, i.e., the agent
transits from vertex v to vertex v′;

• a flow constraint stating that an agent arriving at a vertex
departs from it (with specific cases for the start and end
vertices).

Constraint-based model for P&S More formally, a graph
is a pair (V,U) where V is a set of vertices (or nodes) and U
is a set of edges. Variables ϕu ∈ {0, 1} represent a possible
path from start ∈ V to end ∈ V , where an edge u ∈ U
belongs to the navigation plan iff ϕu = 1 (and 0 otherwise).



The resulting navigation plan Φ can be represented as Φ =
{u| u ∈ U, ϕu = 1}.

Path consistency from an initial position to a final one is
enforced by flow conservation equations, where ω+(v) ⊂ U
(resp., ω−(v) ⊂ U ) represents the outgoing (resp., incom-
ing) edges from (resp., to) vertex v ∈ V .∑

u ∈ ω+(start)

ϕu = 1,
∑

u ∈ ω−(end)

ϕu = 1, (1)

Tv =
∑

u ∈ ω+(v)

ϕu =
∑

u ∈ ω−(v)

ϕu ≤ 1 (2)

Since flow variables ϕu are {0, 1}, equation (2) ensures
path connectivity and uniqueness, while equation (1) im-
poses limit conditions for starting and ending the path. This
constraint produces a linear chain of pass-by waypoints in a
graph — waypoints are vertices of a topological map which
are present in a path of a navigation plan Φ.

These waypoints v are labeled by passing time Dv de-
pending on variables V(v,v′) denoting the average velocity
on edge (v, v′) — this variable is within realistic ranges, de-
pending on the physical minimum and maximum speeds of
the robotic AUGV. The value ‖v, v′‖ is the constant distance
between two vertices v and v′. Variable d(v,v′) represents the
duration of traversal of an edge (v, v′), therefore the last 3
variables are related by equation (3) — the remaining vari-
able rv′,v is ignored, since it represents non-integer values
of variables V(v,v′) and d(v,v′).

Given equation (3), passing times on waypoints are prop-
agated via equation (4), which cumulates edge traversal du-
ration along waypoints.

‖v, v′‖ = V(v,v′).d(v,v′) + rv,v′ (3)

Dv =
∑

(v′,v) ∈ ω−(v)

ϕ(v′,v)(d(v′,v) + Dv′) (4)

Resource consumption, security and observability can
also be modelled by constraints.

Representing Uncertainty
Regarding agents transiting on a topological map, uncer-
tainty can be temporal (uncertainty on the time at which
an agent arrives to a vertex) or spatial (an agent can be
located with latitude/longitude coordinates, not necessarily
those of any vertex). This paper focuses on temporal uncer-
tainty among locations, planned by agents.

For this, confidence intervals, a well-known representa-
tion of temporal uncertainty over the previous (certainty)
variables, are introduced: A confidence interval of a finite-
domain variable X in the above CSP model is an inter-
val over integers [Xmin;Xmax], represented by two finite-
domain variables Xmin and Xmax associated to X . A real-
ization of X is an instanciation of X which conforms to its
confidence interval.

For example, a realization of the above duration variables
d(v,v′) on edges is an instanciation of all variables d(v, v′)
along the path, which conform to their confidence intervals
[dmin

(v,v′); d
max
(v,v′)].

Velocity Model for Uncertainty Uncertainty is repre-
sented in the previous velocity model (recall equation (3) in
the previous paragraph) by turning both the velocity and the
duration variables into confidence intervals [V min

(v,v′);V
max
(v,v′)]

(refer to equation (5)) and [dmin
(v,v′); d

max
(v,v′)] (refer to equation

(10)), and smilarly relating their lower bounds (refer to equa-
tion (6)) and upper bounds (refer to equation (7)) — as for
the previous certainty model, the rounding variables rv,v′
are ignored, since they correspond to non-integer values of
confidence intervales on velocities, distances and durations.

A constant relative confidence interval
[∆V min

(v,v′); ∆V max
(v,v′)], where ∆V min

(v,v′) is a negative integer
and ∆V max

(v,v′) is a positive integer, limits the possible expan-
sion of the confidence interval for velocity [V max

(v,v′);V
max
(v,v′)]

(refer to equations (8) and (9)).

V min
(v,v′) ≤ V(v,v′) ≤ V max

(v,v′) (5)∥∥v, v′∥∥ = V min
(v,v′).d

min
(v,v′) + rmin

v,v′ (6)∥∥v, v′∥∥ = V max
(v,v′).d

max
(v,v′) + rmax

v,v′ (7)

V(v,v′) + ∆V max
(v,v′) ≤ V max

(v,v′) (8)

V(v,v′) + ∆V min
(v,v′) ≥ V min

(v,v′) (9)

dmin
(v,v′) ≤ d(v,v′) ≤ dmax

(v,v′) (10)

The ORTAC model also represents the duration Sv of an
action performed by an agent at a waypoint v, in addition
to its passing time Dv — agents not only passes at way-
points but perform durative actions there. Since duration and
velocity on an edge are uncertain, representing uncertainty
also involves turning variable Dv into a confidence interval
[Dmin

v ;Dmax
v ] on each vertex v. The realization of variable

Dv in its confidence interval is represented by equation (11).
Representing uncertainty on vertices relates the arrival

time Dv at waypoint v to the time of arrival Dsucc(v) at the
next waypoint succ(v) of the same path, using the confi-
dence interval bounds (12 and 13) — uncertainty over con-
fidence interval never decreases along path following, hence
the direction of the two inequalities.

Dmin
v ≤ Dv ≤ Dmax

v (11)
Dmin

succ(c)) ≥ Dmin
v + dmin

(v,succ(v)) + Sv (12)

Dmax
v + dmax

(v,succ(v)) + Sv ≤ Dmax
succ(v) (13)

Uncertain Coordination among Agents The ORTAC
model can represent not only one agent traversing a topo-
logical map, but several agents: this is performed by itera-
tively defining the finite-domain variables representing each
agent behavior and constraint postings, all indexed by each
agent — a loop over variable definitions and constraint post-
ings, indexed by agent (that is, two different missions on the
same scenario and the same agents, but with different coor-
dinations, imply slightly different CSP models). As such, it
seems natural to represent coordination among these agents,
using additional constraints. For example, in a disaster re-
covery scenario involving a damaged village (as in Figure



1), one or more agents look for refugees in the surrounding
outside while another agent searches for casualties inside.

For this, ORTAC represents temporal coordination con-
straints between two agents on two vertices, for which the
semantics is informally defined as follows (refer to (Guet-
tier 2007) for the logical semantic definition):

• before: agent A performs its action on its vertex before
agent B performs its action on its other vertex, within a
time window;

• after: agent A performs its action on its vertex after agent
B performs its action on its other vertex iff agent B before
agent A;

• simultaneous: agents A and B perform their respective ac-
tions on their respective vertices during the same period of
time;

• disjunct : agent A is disjunct from agent B on vertex v iff
agent A is passing before agent B or agent B is passing
before agent A on vertex v.

In order to represent temporal uncertainty into these coor-
dination constraints, the confidence intervals of the previous
section must also be considered into the above coordination
formulation. Let A and B be two different agents transiting
in a topological map:
• Agent A is uncertainly simultaneous to agent B iff their

respective confidence intervals exactly overlap (see equa-
tion (14)).

• AgentA is uncertainly disjunct from agentB iff the upper
bound of the confidence interval of agent A is less than
the lower bound of the confidence interval of agent B (in-
cluding the duration of the action performed by agent A
on the vertex), or the opposite by switching A and B (see
equation (15)).
Formally, given two confidence intervals

[Dmin
v (A);Dmax

v (A)] denoting the passing time of
agent A at waypoint v, and [Dmin

v′ (B);Dmax
v′ (B)] simi-

larly for agent B at waypoint v′, the following uncertain
coordination formulations can be written:

Dmin
v (A) = Dmin

v′ (B) ∧Dmax
v (A) = Dmax

v′ (B) (14)

Dmax
v (A) + Sv(A) ≤ Dmin

v′ (B) ∨
Dmax

v′ (B) + Sv′(B) ≤ Dmin
v (A) (15)

Dmin
v (A) ≤ Dmin

v′ (B) ∧Dmax
v (A) ≤ Dmax

v′ (B) (16)

Dmax
v (A) + Sv(A) ≤ Dmin

v′ (B) (17)

Since temporal intervals are represented in addition to
time points, the certain before coordination constraint is
turned into weak (see equation (16)) or strong (see equation
(17)) uncertainly before coordination constraints, depending
on the existential (see equation (18)) or universal (see equa-
tion (19)) quantifier used for the realization of the variables
Dv(A) and Dv′(B) for the synchronization between agents
A and B. The difference between the weak and strong un-
certainly before constraints can also be considered as en-
abling/forbidding overlaps between the two confidence in-

tervals, which can be formalized with temporal intervals (see
relations ”before” and ”overlaps” (Allen 1983)).

weak synchronisation before(A,B)⇔
∀v ∈ V, ∃(Dv(A), Dv′(B))

∈ [Dmin
v (A);Dmax

v (A)]× [Dmin
v′ (B);Dmax

v′ (B)]

s.t.Dv(A) ≤ Dv′(B) (18)
strong synchronisation before(A,B)⇔

∀v ∈ V, ∀(Dv(A), Dv′(A))

∈ [Dmin
v (A);Dmax

v (A)]× [Dmin
v′ (B);Dmax

v′ (B)]

s.t.Dv(A) ≤ Dv′(B) (19)

Finaly, the same formal model and constraints are defined
for the after uncertain coordination constraint, by switching
agents A and B in the previous before uncertain coordina-
tion model.

Compound search algorithms
Two search algorithms are considered, one to solve the ini-
tial coordinated P&S problems, and then one to solve the
temporal uncertainty resulting from the coordinated paths.

Solving the P&S problem with ORTAC
The global search technique under consideration guarantees
completeness, solution optimality and proof of optimality. It
relies on three main algorithmic components:
• Variable filtering with correct values, using specific la-

beling predicates to instantiate problem domain variables.
the constraint propagator being incomplete, value filtering
guarantees the search completeness.

• Tree search with standard backtracking when variable in-
stantiation fails.

• Branch and Bound (B&B) for cost optimisation, using
minimise predicate.
Designing a good search technique consists in finding the

right variables ordering and value filtering, accelerated by
domain or generic heuristics. A static probes provides an ini-
tial variable selection ordering, computed before running the
global branch and bound search (Guettier and Lucas 2016).
In the approach, the variable selection order provided by the
probe can still be iteratively updated by the labeling strat-
egy that makes use of other variable selection heuristics. In
general, dynamic probing techniques use solutions to some
relaxations of the original problem and consider these ’par-
tial’ solutions as tentative values, see for example (Sakkout
and Wallace 2000) and (Ruml 2001). In ORTAC, the search
strategy uses a static prober which orders problem variables
before the search. This ordering is based on the relations
between problem structure and the partial solution found.
Then, the solving relies a standard CP branch and bound
search strategy, combining variable filtering, AC-5, generic
heuristic and B&B. The probing technique proceeds in three
steps:
• Establish the relaxed problem, abstracting away manda-

tory waypoints and coordination constraints.



• Compute a shortest reference path between starting and
ending vertices, using Dijkstra or A*.

• Establish a minimal distance between any problem vari-
able and the solution to the relaxed problem.
The last step considers the following distance between

partial solution values Xs and all original problem variables
X .:

∀x ∈ X, δ(x) = min
x′∈Xs

||(x, x′)|| (20)

where ||.|| is the distance metric, corresponding to the num-
ber of vertices between x and x′. The last step uses the re-
sulting partial order to sort problem variables in ascending
order, using δ(x). Problem variables are explored following
that order in the global search. The probe construction is
polynomial and does not change completeness nor optimal-
ity properties of the global branch and bound loop.

Search with Uncertainty
As explained above, confidence intervals are intervals over
integers representing temporal uncertainty at planning time
around an exact (certain) planned integer value. That is, in-
volving confidence interval [Dmin

v (X), Dmax
v (X)] of pass-

ing time Dv(X) of agent X on vertex v, in which
Dmin

v (X) ≤ Dv(X) ≤ Dmax
v (X).

We follow this definition by using a labeling search on
uncertainty after the labeling search on the exact (certain)
value of the passing time Dv(X) of agent X at each ver-
tex v. Hence, paths and passing times on vertices are known
(i.e., Dv(X) finite-domain variables are instantiated) before
search on uncertainty is performed.

In order to increase performances, a static heuristic on
variables is used: If a path of length n is composed of way-
points v1, v2 . . . , vi, . . . vn, this heuristic reorders variables
Dmin

vi (X) and Dmax
vi (X) according to the path from start to

end in the forward direction, by increasing i. This heuristic
on variables considers the uncertainty variables Dmin

vi (X)
and Dmax

vi (X) for agent X in the following order (21):

Dmin
v1 (X) ≺ Dmax

v1 (X) ≺ Dmin
v2 (X) ≺ Dmax

v2 (X)

. . . Dmin
vi (X) ≺ Dmax

vi (X) · · · ≺ Dmin
vn (X), Dmax

vn (X)) (21)

Since the confidence interval [Dmin
v1 (X);Dmax

v1 (X)] at
the starting location v1 of agent X is known, labeling is
sufficient to instantiate these confidence intervals along the
path. If a coordination constraint creates an empty domain
of any finite-domain variable Dmin

vi (X) or Dmax
vi

(X)] for
any agent X on any vertex vi, CP backtracking occurs in-
side the search on uncertainty (i.e., on confidence intervals)
and then possibly inside the search on certainty (i.e., on ex-
act variables) — finding other confidence intervals for the
same realization of Dvi(X), or finding another realization.

Experimental results
Benchmarks
Experiments on four benchmarks are presented, which are
representative of peace keeping missions or disaster relief.

Figure 4: Paths solution for coordinated manned vehicle and
the AUGV

Missions must be executed in less than 30 minutes. Areas
range from 5x5 kms to 20x20 kms.

1. Recon villages: Observing different villages after a major
water flooding event, described as a running example in
Fig. (1) and for which a solution to a 2 agents problem is
given in Figure (4);

2. Reinforce UN: Bring support to a United Nations mission
by deploying observers in an unsecure town;

3. Sites inspections: Observing different parts of a town dur-
ing inspection of suspect sites;

4. Secure humanitarian area: Observing different threats be-
fore securing refugees, over a large area.

On the first benchmark, Figure 4 shows the two paths
found by the first P&S algorithm. Resolving uncertainty then
provides the confidence intervals given in Figure 5 for the
two coordinated agents.

Performances of the Uncertainty Model
In order to measure the additional computational cost of the
solving process due to the uncertainty model, ORTAC has
been run on 4 topological maps, composed of 22 / 33 / 23 /
22 vertices and, respectively, 74 / 113 / 76 / 68 edges. Each
example involves 2 to 8 agents. The experiments were car-
ried out on a computer with processor i7 at 2GHz with 4Gb
RAM on a virtual machine. The computation time is mea-
sured for the certainty search and for the uncertainty one
— see Figure 6. Further experiments have been carried out
with a topological map representing the streets and intersec-
tions of Paris: solving time takes more than 2 hours under
the same experimental conditions.

Related work and Discussion
First, Nilsson et al. (Nilsson, Kvarnström, and Doherty
2015) define Simple Temporal Networks with Uncertainty
(STNUs) as an extension of Simple Temporal Networks



- Uncertain coordination simultaneous between:
unit1 on node 11 and unit2 on node 12
--- Agent : unit1
Absolute uncertainty on node 2 : -2 =< 0 =< 3
Absolute uncertainty on node 11 : 10 =< 32 =< 35
Absolute uncertainty on node 16 : 55 =< 77 =< 80
Absolute uncertainty on node 17 : 59 =< 81 =< 84
Absolute uncertainty on node 18 : 65 =< 87 =< 90
Absolute uncertainty on node 19 : 71 =< 93 =< 96

--- Agent : unit2
Absolute uncertainty on node 1 : -2 =< 0 =< 3
Absolute uncertainty on node 4 : 2 =< 4 =< 7
Absolute uncertainty on node 10 : 5 =< 7 =< 10
Absolute uncertainty on node 12 : 10 =< 12 =< 35
Absolute uncertainty on node 13 : 16 =< 18 =< 41
Absolute uncertainty on node 19 : 82 =< 84 =< 107
Absolute uncertainty on node 20 : 88 =< 90 =< 113

Figure 5: Excerpt of output of ORTAC for 2 units ”unit1”
and ”unit2” with the coordination constraint ”simultaneous”
between vertices 11 for unit1 and 12 for unit2. Each line
shows the lower bound of the confidence intervalDmin

v (X),
the exact (certain) passing timeDv(X) on each vertex v, and
the upper bound of the same confidence interval Dmax

v (X).
Times are given in minutes and progression time in search
and rescue is expressed in meters per minute.

(STNs) (Dechter, Meiri, and Pearl 1991) towards represent-
ing uncertainty — this has been extended towards contin-
uous uncertainty with Probabilistic STNUs (Santana et al.
2016). A temporal action in a STNU is represented as start
and end times, with a bounded duration: for every tem-
poral action A, duration(A) = end(A) − start(A) ∈
[min(A),max(A)]. These authors propose an algorithm
with O(n3) complexity to incrementally verify that there al-
ways exists a solution for the start and end times of each
action (dynamic controllability), regardless of what hap-
pens at execution time — these start and end times are
constrained by uncontrollable/contingent phenomena (e.g.,
wind, weather). In contrast, our approach does not consider
one agent only, as with STNUs, but several, which is mod-
elled by a flow constraint (refer to equation (2)). As such,
our model can represent coordination constraints among
agents (crucial for our application on AUGVs), which can-
not be represented by STNUs’ binary constraints. A com-
mon ground between STNUs and our approach would be to
define a CP global constraint, called dynamic controllabil-
ity verification, to ensure consistency of a subset of our CP
constraints model.

Second, Fargier et al. (Fargier, Lang, and Schiex 1996)
extend the CSP framework to deal with reasoning under in-
complete knowlege: they propose an anytime algorithm (im-
plemented in (Guettier and Yorke-Smith 2005) for an appli-
cation in the aerospace domain) based on a set X of un-
controllable variables and on another set Y of controllable
variables — hence its name mixed-CSP. The algorithm pro-
posed by these authors covers realizations of variables ofX ,
one by one, with CSP resolution over variables of Y and iter-
ates on realizations until they are all covered. This algorithm
exhibits an anytime property, since uncontrollable variables
are considered first one by one: interrupting this algorithm
leaves covered a subset of X . In contrast, our approach is
based on uncertainty by extending a certainty reasoning, as

6.a Recon village after flooding

6.c Suspect sites inspection

6.b Reinforce UN in town

6.d Secure humanitarian area

Figure 6: Performance on benchmarks according to the num-
ber of agents and one coordination constraint per run: execu-
tion time in blue and red, respectively for the reference P&S
problem, and the scheduling under uncertainty



STNU extends STN, whereas mixed-CSP considers uncon-
trollability first and then responds to it by controllability —
an approach which suffers from severe algorithmic complex-
ity.

Third, one could argue that mixed-integer programming
(MIP), instead of CP, could be used to solve our model. That
is, equation (2) would be interpreted as an integrity equation,
common in MIP, whereas the rest of the model would be
turned into linear inequalities among variables on integer or
real values. Unfortunately, our velocity model is not linear
but quadratic (refer to equation (3)).

However, following this idea anyway, our model is based
on finite-domain variables (i.e., on variables over integers),
as in every CSP, and it would be interesting to mix inte-
gers and real numbers, as in MIP. For example, for rep-
resenting continuous values of temporal variables in our
model, such as passing time Dv at waypoint v or duration
Sv . Indeed, the implementation language, Sicstus Prolog, in-
cludes a continuous solver (Carlsson 2015), but that latter
solver and the CSP solver hardly cooperate. A more inter-
esting approach towards mixing discreteness and continu-
ity in CP is the CSP solver CHOCO (Prud’homme, Fages,
and Lorca 2017), harmoniously integrated to the continuous
solver IBEX (Chabert and Jaulin 2009). But porting ORTAC
onto these two solvers would entail large software engineer-
ing work.

Finally, the incremental property of STNU’s verification
algorithm and the anytime property of mixed-CSP are inter-
esting, which would lead in our context to what could be
called anytime CSP, meaning interrupting a CSP solver be-
fore completion and having a partial solution where some
quality would increase over the alloted time. But that would
be another story — after all, time that passes can also be
considered as an uncontrollable continuous variable.

Conclusion
A discrete representation of temporal uncertainty based on
confidence intervals in a CSP-based planning and schedul-
ing system has been presented. This extends a system known
as ORTAC (Guettier 2007) which finds paths in a topologi-
cal map for multiple agents with coordination constraints —
its applications include planning paths of tactical units in a
wargame, finding routes in a road network while minimizing
consumed energy and planning medical visits of patients.
Early experiments show that adding an uncertainty model
to a certainty one does not significantly degrade the solving
performances of the whole system.

Future work includes: Considering a higher level lan-
guage inspired by ANML (Smith, Franck, and Cushing
2008), which seems more appropriate than PDDL (McDer-
mott et al. 1998) for P&S robotic applications (Dvorak et
al. 2014); And connecting ORTAC to a wargame simulating
AUGVs, before porting the system to AUGVs for real.
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