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Abstract — This paper presents the work with a team of three 

humanoid robots exploring unknown domestic indoor 

environments. This work takes place in the context of a French 

robotic challenge, CAROTTE. Each robot autonomously uses its 

on-board sensors to explore the environment and to avoid 

encountered obstacles, while the team spreads in different 

directions to optimize the exploration. The gathered information 

is sent to a centralized server which merges them in a global map 

and performs object detection. The presented framework is 

designed to answer the constraints of the platform and the 

environment, resulting in a robust exploration and mapping 

system for a team of humanoid robots. 

Keywords—humanoid robotics, exploration, mapping, 

localization, vision, integration 

I. INTRODUCTION 

Exploration of an unknown indoor environment with 
autonomous robots remains a major goal in Robotics. Having a 
robotic help for mapping an apartment, recognizing and 
localizing dedicated objects in it would lead to many civil and 
military applications. Towards this goal, the French National 
Research Agency (ANR) and the French Defense Procurement 
Agency (DGA) have together organized and sponsored the 
challenge CAROTTE (the French acronym means Mapping of 
a Territory with Robots). The goal of this challenge is to have 
one or several mobile robots mapping a 120m² indoor 
environment, recognizing objects in it and coming back to their 
initial entry point, all in 30 minutes. The challenge arena 
consists in a simplified domestic environment, containing 
rooms and everyday life objects. Five teams were competing in 
the challenge, with three evaluation sessions over three years. 
In this paper, we describe the YOJI team (the French acronym 
stands for Eyes, Ears and Legs for Inspection), composed of 
Aldebaran Robotics (manufacturer of humanoid robots), CEA 
LIST (French Atomic Commission) and Voxler (company 
specialized in sound processing). 

Our exploration platform was the humanoid robot NAO, 
developed by Aldebaran Robotics, a flexible and affordable 
robotic research platform. The objective of Aldebaran Robotics 
is to provide robot companions for domestic applications. In 
that context, the ability to navigate in his new home will be 

crucial for the domestic robot. That is why Aldebaran 
participated to the CAROTTE Challenge. 

 

Fig. 1. The NAO robot with the laser head 

Originally the NAO robot is a 58cm high humanoid robot 
equipped with 25 joints, 4 microphones, 2 cameras, 2 ultra-
sonic sensors and tactile and pressure sensors on the feet. 
Because localization and mapping based on these sensors only 
would have been too complicated, especially for the embedded 
CPU (ATOM 1,6 GHz) of NAO, we decided to add a laser 
range finder (Hokuyo, 5m range) on the top of his head. The 
use of 3 NAO for the exploration was a way to compensate the 
slowness of his bipedal walking (0,2m/s) compared to speed of 
all the other wheeled competitors. A remote PC, used as a 
server, is connected to the three NAO with a Wi-Fi link.  

In this paper, after a literature survey (section II), we 
present an overview of the system used for the exploration in 
section III. In section IV, the principles of the navigation of 
each robot are explained. Section V introduces the innovative 
algorithms used for object recognition. Finally (section VI), we 
sum up our contributions and highlight directions of future 
work. The work of Voxler about sound recognition has been 
left out of this paper. Even if some good results have been 
obtained and if it appears that audio interaction is a very 
important feature for companion robots, we have preferred to 
stick to classical features of exploration in this paper.  

The YOJI project has been supported by the French Research Agency 
(ANR-09-CORD-10401). 
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II. RELATED WORK 

The generic problem of exploring an unknown environment 
is called Simultaneous Localization And Mapping (SLAM). 
There are two kinds of approaches : metric and topological. 
Metric SLAM uses some quantitative metric sensors such as 
sonar arrays, laser sensors or more recently 3D cameras. The 
most common approaches, as described for example in [1], are 
occupancy grids [2], Kalman filter based approaches and 
particle filters [3]. Topological SLAM does not provide metric 
information, but constructs a graph where nodes correspond to 
places and links define possible paths. For example, [4] 
presents a topological navigation system where places are 
learned and recognized using camera information. The hybrid 
approach combines the advantages of both: scalability and easy 
semantic labeling combined local metric information, as 
explained for example in [5]. This is particularly adapted to the 
case of this challenge, because the robots are equipped with a 
metric sensor and they are navigating in a large environment, 
where rooms can be associated to a node. 

Multi-robot exploration is an interesting case of SLAM. 
This setup makes it possible to combine the gathered 
information, making the whole system more robust, and to 
optimize the exploration strategy. For example [6] builds a 
global map which copes with high odometry errors and reduces 
the exploration time of each robot.  Since the odometry errors 
on the NAO robots are quite high and the walk is much slower 
than a typical wheeled robot, using this sort of approach is 
extremely interesting in our case. 

The NAO robot is not a classical platform for performing 
exploration. It has specific constraints due to its humanoid 
walk, which makes the exploration slower and the integration 
of new sensors harder (because of the added weight). 
Localization systems have already been developed on NAO. 
[7] and [8] use metric data built from a laser or a depth camera 
to localize the robot relatively to a known 3D model of the 
environment. [9] performs SLAM for the constrained 
environment of the RoboCup to make NAO robots cooperate 
and play soccer. However, both these approaches have strong 
preliminary hypotheses about the environment (3D model 
available, beacons), which is not the case in this challenge. 
Thus our framework does not make any assumption on the 
environment. 

III. OVERVIEW OF THE SYSTEM 

The principle of the architecture is to have each NAO as 
autonomous as possible to prevent the loss of the Wi-Fi 
connection with the remote PC, while still allowing to merge 
the information from the different robots. 

Each NAO is autonomously able to walk, to avoid 
obstacles detected by ultra-sonic and tactile sensors and by the 
laser and to recover from possible falls.  Using the laser, NAO 
is able to build a map of his environment and localize himself 
while walking. The exploration software, based on the 
mapping, is embedded as well on each NAO. This local 
architecture allows each robot to explore safely his 
environment and to come back to his starting point with a map 
of the explored zone without any assistance from the remote 
PC.  If the Wi-Fi connection with the PC is available, each 

NAO sends the current version of the environment map, the 
pictures and the sound he obtained from cameras and 
microphones to the PC. If the PC recognizes objects or sounds, 
it sends the identifier back to the NAO who takes it into 
account.  

The role of the remote PC is then to get information from 
the three NAO: pictures, sounds and maps. Based on a 
database of pictures and sounds, the identification of objects in 
the pictures and of audio events in the sounds is realized. The 
identified items are sent back to the robot who detected it. 
Collecting the maps from the three robots, the PC merges them 
and processes them to build a complete map. This complete 
map may then be sent to each robot for the optimization of the 
exploration task (see section IV.D). 

Fig. 2. Client-Server architecture for a team of 3 robots 

To perform an exploration, each robot scans the 
environment with the laser and the cameras before moving.  
The pictures are then sent to the remote PC.  Using the laser 
scan, the map of the environment is consolidated and new 
points to explore are computed. The most relevant point to 
explore is selected and NAO walks towards it. While walking, 
NAO uses the laser information to localize himself in his map. 
The obstacle avoidance uses the information coming from all 
the available sensors as described in section IV. For most of 
the sensors, the information is processed on board. But the 
pictures taken by the camera are processed remotely on the PC 
because of the limitation of the embedded CPU.  

IV. NAVIGATION 

A. Exploration 

The principle of the exploration is to make the robot 
explore detected points of interest. A point of interest is 
characterized by a discontinuity in the laser scan performed by 
the robot when he stops. Such a discontinuity generally 
corresponds to an open door or a dead angle in the field of 
view. The robot selects a point of interest among the list he has 
collected so far. He moves 50cm towards this point of interest, 
then stops. A new scan is completed to update a tree of points 
of interest to explore.   

The selection of the point of interest in the list is based on a 
heuristics, impacting the behavior of the robot. For example, if 
the robot goes systematically to the latest discovered point, this 
will be inefficient. In section IV.D we explain how the 
selection can be optimized according the relative position of 



each robot if they can share their knowledge. But each robot 
has to be able to select his destination by himself. The priority 
of each point is evaluated based on its proximity and the 
complexity of the trajectory to reach it.  

When all points of interest have been explored the robot 
goes back to his starting point.  In practice, there was also a 
timer making the exploration stop, because each run ot the 
challenge took place in a limited time (30mn). 

B. Obstacle avoidance 

Obstacle avoidance is a well know topic in the robotics 
community [10]. In the case of NAO, the real problem is  to 
detect the obstacle more than to avoid them, because of the 
reduced walking speed. The size and the shape of NAO 
constrain the choice of embedded sensors. NAO can only carry 
a 5m range Hokuyo laser. Furthermore, the bipedal locomotion 
of NAO makes NAO much more sensitive to collision than a 
wheeled robot. A fall leads to a loss of time, sometimes of the 
localization and, fortunately rarely, to a possible robot break 
(because the laser senor is fragile).  

All available information is combined to prevent and, if 
necessary, detect collisions. While the laser is mainly used for 
localization and mapping (see subsection C), we also use it to 
detect obstacles. When the robot walks, the laser plane is 
horizontal at 65cm above the ground, so small objects cannot 
be detected. That is why the robot performs a vertical scan with 
a motion of his head whenever it stops, to cover smaller 
obstacles (Fig. 3). 

 

Fig. 3. Horizontal detection (left) and vertical detection (right) 

One of the most dangerous obstacles in the CAROTTE 
challenge is the presence of loose grounds. Some parts of the 
ground in the arena are made of gravel or loose earth on which 
it is forbidden to walk. The only way for NAO to detect them 
is vision. The bottom camera of NAO is used to take pictures 
of the ground when the robot stops. Using the texture detection 
of the object recognition feature (see section V), NAO is able 
to identify a part of the ground as an obstacle to be avoided. 
Recognized objects from the previously taken pictures are also 
considered as obstacles. The drawback is that a wrong 
detection of an object also creates an obstacle: false positive 
may surround the robot with non-existent obstacles. In 
practice, this is one of the causes of the failure of the final 
exploration of the YOJI team. 

NAO is equipped as well with 2 ultrasonic sensors with a 
horizontal field of view of 75° and a small overlap in front of 
the robot. This very wide angle does not really allow localizing 
objects around the robot. Thus the ultrasonic data is taken into 
account only when both of the sensors give the same value 
smaller than 40cm, which means that an obstacle is exactly in 
front of the robot. Although this detection is limited, it provides 

an alternative to the laser, in particular to detect glass walls, 
which are invisible to the laser. 

Sometimes collisions cannot be avoided: it is then detected 
with the feet bumpers, arms and inertial unit. By checking the 
position error of the arms, it is possible to detect whether the 
arms have touched an obstacle or not. The inertial unit can 
detect that the robot is no longer strictly vertical. It generally 
means that the top of the robot has collided with an object 
invisible for the laser and the ultrasonic sensors, typically the 
seat of a chair which is in a dead zone for them.  

Despite of all these detections, it could happen that the 
robot falls down anyway. In this case, the robot stands up again 
and creates an obstacle in the map at his current location.  Even 
if the reason of the fall is not known, the added obstacle will 
prevent it from coming back to that location. 

At last, according to the sensor that detects the obstacle, a 
life period is given to this obstacle. At the end of this period, 
the obstacle disappears. This is a way to deal with false 
detections that can happen with some sensors. The life period 
is much longer if the obstacle is detected by the laser than if it 
has been detected by the ultrasound, according to their 
respective reliability. This period is also a simple way to take 
into account moving obstacles. 

Once obstacles are detected we applied classical methods 
(A* [11], Configuration Space [12]) to avoid them. Thanks to 
this set of methods, we improved drastically the robustness of 
the navigation of NAO along the three years of the challenge. 

C. Localization and Mapping 

The localization algorithm is based on a particle filter [13]. 
It looks for the localization of the robot that optimizes the 
matching between the current laser scan and the current version 
of the map while the robot is walking. The same particle filter, 
with a greater number of particles, is used for mapping. When 
the robot stops, he performs a 360° scan by turning his head. 
The particle filter finds the best matching between the current 
version of the map and this global scan. Typically, the laser 
measurements behind the robot are used to localize accurately 
the robot in the current map and the measurements in front of 
the robot are used to create new parts of the map. 

 

Fig. 4. Raw map created during an explortation  

Fig. 4 shows the result of the mapping of one robot in a real 
environment. The nodes and links of the topological graph are 



marked in blue, and placed in the global reconstructed map. 
White areas correspond to free space, black areas to obstacles 
and gray areas to unknown environments. 

When the robot stops, a topological node is created to store 
the current horizontal laser scan, the vertical scan, the pictures 
of the ground and the pictures of the surrounding environment. 
These pictures are sent to the object recognition server 
presented in the next section.  For the requirements of the 
CAROTTE challenge, we combine the local metric maps to 
build a global map of the environment. The robot navigates 
within this metric map. 

The CAROTTE contest rules also require computing the 
localization of the different rooms. Because the raw map data 
are noisy, it is necessary to clean the contours of the map. We 
then build a distance map based on these contours, and erode it. 
The blobs are then used as seeds for a watershed algorithm (as 
described for example in [14]). The output gives an estimation 
of the surface of each room.  Fig. 5 presents the contour 
cleaning step (top) and the obtained seeds for the watershed 
(bottom). 

   

   

Fig. 5. Adjustment of the contours (top) and detection of the rooms (bottom) 

D. Multi-robot exploration 

It is interesting to consider the optimization of the 
exploration by several robots. Each robot has a partial 
knowledge of the environment and can only explore the 
interest points he has discovered so far. From a theoretical 
point of view, it can happen that a robot could reach faster an 
interest point detected by another robot. Merging the 
knowledge of the three robots on the remote PC could bring to 
a global optimization of the environment. One of our 
competitors at the CAROTTE contest, the team Robots Malins, 
has made very interesting work about that [15].  

We have worked on a supervisor running on the remote PC. 
Its role would be to send instructions on interest points to be 
explored by each robot. This appeared to be very complicated 
because the robots have to share their topological trees, their 
maps and their localization. Considering the low accuracy 
available on localization of each robot, it was quite difficult to 
evaluate the real proximity of a robot from an interest point 
detected by another robot. Furthermore, the results we got in 

simulation, with a better localization, did not really prove that 
this supervision was very useful on the 2D environments 
proposed by the CAROTTE contest.  

In practice, the heuristics we used for the CAROTTE 
challenge were simple: for his first choices, the robot on the 
right of the start line selects the interest points on its right. The 
one on the left the points on its left, and the robot in the middle 
will prefer to go straight forward. After two meters, each robot 
can select his interest points independently from this initial 
heuristic. The experiments showed that this simple decision 
process allows spreading the robots in different parts of the 
environment. Fig. 6 shows the beginning of an exploration with 
three robots going in three different directions thanks to these 
simple heuristic.  

Fig. 6.  Paths followed by the 3 robots using the heuristics “to the right”, “to 

the left” and “to the middle” for exploration (simulation).  

The collaboration of the robots was used to merge the map 
built by each robot off-line, after the exploration phase. In Fig. 
7, we present the maps created in the real world by two robots 
and the way these maps are merged to produce a global map. 
Merging two maps involves finding a translation and a rotation 
of the second map with regards to a first one that maximize the 
number of similar pixels or grid cells. The stochastic search 
approach of [10] has led to parameter settings (e.g., for 
parameter clock) which were too difficult and unstable. As 
opposed to it, the approach of [16], based on the Hough 
transform, quickly detects horizontal and vertical lines, and 
therefore their matching between two maps, which is 
appropriate in structured indoor environments such as the ones 
of the CAROTTE challenge. 

 

Fig. 7. Merging of the maps created by two robots 

 



V. OBJECT AND GROUND RECOGNITION 

The robot is able to recognize both rigid objects within his 
environment and the nature of the ground around him. 
Although being based on computer vision mainly, these two 
tasks rely on different algorithms. 

 

Fig. 8. NAO detects and avoids a dangerous soil 

Ground and wall nature recognition is treated as a texture 
classification problem. Eight types of grounds and nine for 
walls have to be recognized, but some of them are similar (e.g. 
metallic grid can be found as a wall or on the ground) and other 
were considered as too hard to be detected visually as a texture 
(mirrors, transparent Plexiglas). We finally retain 11 classes 
and collected 25 to 106 learning images per class, resulting into 
559 learning images that were cropped manually in order 
homogeneously reflect each texture. We then extracted a RGB 
color histogram (64 bins) and a 512 texture histogram based on 
local edge pattern [17] from the learning images and used this 
database to learn a model with a fast shared boosting algorithm 
[18]. Although designed for larger scale problem, this 
algorithm has the advantage to be fast to learn thanks to its 
linear complexity according the number of learning images, the 
feature size and the number of classes. Its ability to share 
feature between classes makes him interesting for memory-
limited systems. In our case we learn 2000 stumps as weak 
classifiers to make a robust strong one according to the 
boosting principle. During the on-line testing phase, each 
received image is divided according to a 4x4 grid and each one 
of these regions is tested independently. The classifiers return a 
confidence score and a threshold was learned for each class 
(i.e. texture) in order to avoid false positive. Two images are 
analyzed at each topological node. The upper part of an image 
taken with a horizontal camera is used to determine the wall 
texture only. The full image resulting from a camera oriented 
with a 45° slant is used to identify ground texture only. 

Regarding rigid objects, two approaches were used, 
according to whether the considered object is textured or not 
(Fig. 9) 

For textured objects, we are able to use a classic method 
that matches keypoints. We first detect points of interest 
according to the SURF method: it detects interest keypoints 
with a Hessian matrix-based measure then describes the local 
area around each point with a 64-dimension vector computed 
from Haar-wavelets filtering [19]. Then, descriptors extracted 
from a testing image are matched to those of a learning model 
using a Flann-based KD tree [20]. Finally, we use RANSAC to 
determine whether a set of points within the testing image can 
match with a learned model. For learning, we take several 
pictures of each object, under all viewpoints of interest. Each 
image is then compared to the testing image and the final 
decision is taken from views that match. Each view leads to 
determine a bounding box thus we simply retain the average of 
the boxes that do not differ too much (one standard deviation). 

 

Fig. 9. Example of textured object (bottom) and non-textured one (top) 

However, such a strategy based on interest keypoints 
detection would fail with weakly textured object such as 
balloon of uniform color boxes. In that case, we us a strategy 
based on efficient subwindow search [21] (ESS) from color 
descriptors. First, we learn a Support Vector Machine of an 
object, from color feature. Then, at each pixel of a testing 
image, we use this model to compute the probability of 
presence of the object. The ESS algorithm is then based on a 
branch-and-bound strategy, efficiently implemented with 
integral images, to rapidly converge toward a bounding box of 
the object. Since a box is always found, we compare the score 
to a threshold to possibly reject the detection. 

All objects have their own models and are tested separately. 
Hence, the complexity of the full process may grow linearly 
with the number of objects (although the process to detect non-
textured object is usually lighter than for textured objects). To 
reduce this global complexity, we sorted the object list to 
compute only once the features from the testing image. On a 
core2 duo P8400@2.26GHz, the detection performances are 
0.086 second per object and per image, on average,  measured 
with a base of 12 objects (7 textured – 5 non textured) and 118 
testing images.  
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VI. RESULTS AND FUTURE WORK 

The presented architecture is designed to deal with the 
constraints of the platform and the challenge arena, and was 
successfully used during the challenge. The particle filter 
mapping combined with the exploration heuristics and the final 
map merging made it possible to spread the robots and cover a 
significant part of the arena, while still being able to run 
directly on the robots. Merging sensors data provided a fairly 
reliable obstacle avoidance, along with the collision and fall 
detection. In particular, this solved the problems of chairs and 
table, which require the whole merging framework to be 
detected. Several successful explorations were run, with an 
artificial limit of a maximum 10 meters walked distance. This 
video shows an example of successful explorations run on the 
first year of the challenge. The robot can be seen performing 
laser scans and avoiding obstacles, along with some example 
of ground and wall types.  

However, some problems occurred in the final run. Some 
were due to particularly difficult obstacles such as a tricky 
ground or the robot getting stuck under a bed. Another problem 
came from the high number of false detections of non-textured 
objects, which generated virtual obstacles, consequently 
blocking the robot. However these false detections rather came 
from a last minute change of the camera, and so a significant 
difference between the actual images and the training base. 

Despite these issues, this challenge was an opportunity to 
prove that it is possible to explore an unknown environment 
with a humanoid platform. The issues encountered come 
mainly from mistakes done in the rush of the challenge, not 
from the architecture itself. It is also worth noticing that even if 
the YOJI team was ranked last it competed against wheeled 
robots, with long ranged lasers, Kinect depth sensors or full 
computers on board. 

These results open interesting perspectives for indoor 
navigation. In particular, it shows that despite their specific 
constraints humanoid robots will be able to evolve in domestic 
environments. 

In the future, the robots should not depend on the laser 
sensor, for price, security and walk stability reasons. This 
means that, unless a depth sensor can be integrated better, the 
navigation framework will be mostly based on camera 
information, and topological data. The work presented in [22] 
shows a first step towards using the camera only, by computing 
the current robot orientation from images. Future work 
includes  implementing a vision-based topological framework 
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