Task/action planning: Classical and embedded trends

Philippe Morignot

Part I --- Classical planning

Introduction

Topics list of the European Conference on Artificial Intelligence ECAI'16:

- Autonomous Agents and Multi-agent Systems
- Constraints, Satisfiability, and Search
- Knowledge Representation, Reasoning, and Logic
- Machine Learning and Data Mining
- Natural Language Processing
- Planning and Scheduling
- Robotics, Perception and Vision
- Uncertainty in Al
- Web and Knowledge-based Information Systems
- Cognitive Modeling and Cognitive Architectures
- Agent-based and integrated systems
- Multidisciplinary Topics

Definition (1/2)

 « Given an initial state, goals and action templates, find a sequence of instantiated actions which provably lead the initial state to a state containing the goals. »

• A.I. planning = task planning = action planning = plan synthesis = plan generation (= planning?) = activity of finding this solution plan.

Definition (2 / 2)

 « Given an initial state, goals and action templates, find a sequence of instantiated actions which provably lead the initial state to a state containing the goals. »

• A.I. planning = task planning = action planning = plan synthesis = plan generation (= planning?) = activity of finding this solution plan.

Planning Domain Definition Language (1 / 3)

- PDDL is a representation language which proposes:
 - A *domain*: operators;
 - A problem: an initial state and goals.
- An operator is composed of:
 - *Pre-conditions*: terms which must hold for the operator to be executable;
 - **Post-conditions** / **effects**: terms the truth value of which are changed by the execution of the operator, i.e., added (Post+, ADD-LIST, positive) or retracted (Post-, DELETE-LIST, negative).
- If an operator is applicable: $S_{out} = S_{in} \cup Post + \setminus Post$
- A term can be sometimes true and sometimes false (non monotonicity), depending on the time in the plan at which this term is considered.
 - Logical negation, e.g., (not (ON MOUSE PAD)).
 - Fluent, e.g., (ON MOUSE PAD).

Planning Domain Definition Language (2 / 3)

- Table? Colors? Arms? Nicks? Sizes? Conditionals? Universal quantifications?
- Qualification problem; Ramification problem.
- Frame problem: Closed world assumption.

Planning Domain Definition Language (3 / 3)

```
(problem blocks-24-1)
(define
   (:domain blocks)
   (:objects X W V U T S R Q P O N M L K J I H G F E D C A B)
   (:init
          (CLEAR K) (CLEAR I) (ONTABLE C) (ONTABLE O)
          (ON K F) (ON F T) (ON T B) (ON B G) (ON G R)
          (ON R M) (ON M E) (ON E J) (ON J V) (ON V N)
          (ON N U) (ON U H) (ON H C) (ON I A) (ON A P)
          (ON P Q) (ON Q D) (ON D W) (ON W X) (ON X S)
          (ON S L) (ON L O) (HANDEMPTY))
                                                                                                     Α
  (:goal (and
                                                                                            M
                                                                                                     Q
          (ON L C) (ON C P) (ON P Q) (ON Q M) (ON M B)
                                                                                                     D
          (ON B G) (ON G F) (ON F K) (ON K E) (ON E R)
                                                                                                     W
          (ON R A) (ON A W) (ON W T) (ON T N) (ON N J)
                                                                                                     S
                                                                                                                          0
          (ON J U) (ON U S) (ON S D) (ON D H) (ON H V)
                                                                                                     0
          (ON V O) (ON O I) (ON I X))))
```

The anomaly of Gerald Jay Sussman (1 / 2)

with operator:

April 29, 2016 Seminar VEH08, VEDECOM
P. Morignot – 06/01/2012

The anomaly of Gerald Jay Sussman (2 / 2)

April 29, 2016 10

Planners

- Using forward search in a state space (J. Hoffman, H. Geffner).
- Using backward search in a state space (M. Helmert).
- Using (forward) search in a plan space (A. Barrett).
- Using evolutionnary algorithms (M. Schoenauer).
- Using temporal logic (P. Doherty).
- Using mixed integer programming (D. Nau).
- Using constraint programming (P. Laborie, V. Vidal).
- Using propositional satisfiability (H. Kautz & B. Selman, J. Rintanen).

Hierarchical Task Network

Planner using SAT solvers: Principle

- 1. Set the length of the plan to *n* (= 1 initially)
- 2. Encode the planning problem of size n as a propositional formula: initial_state \land all_plans_n \land goals

// SUCCESS

- 3. Run a SAT solver
- 4. IF solution found THEN decode

5. Increment *n*

Improvement: Try plan lengths in parallel.

Planner using SAT solvers: Encoding

 $on(A,B)@T \land on(B,C)@T$ Goals: Initial state: $clear(C)@0 \land on(C,A)@0 \land clear(B)@0$ $(\land \neg on(A,C)@0 \land \neg on(A,B)@0 \land \neg on(B,C)@0 \land \neg on(B,A)@0$ $\land \neg on(C, B)@0 \land \neg clear(A)@0)$ // closed world assumption Axiom schemas on preconditions: $\forall x, \forall y, \forall z, \forall t$: $\operatorname{puton}(x, y, z) @ t \Rightarrow \operatorname{on}(x, y) @ t \wedge \operatorname{clear}(x) @ t \wedge \operatorname{clear}(z) @ t$ Axiom schemas on effects: $\forall x, \forall y, \forall z, \forall t$: $on(x,y)@t \wedge clear(x)@t \wedge clear(z)@t \wedge puton(x,y,z)@t \Rightarrow clear(y)@t+1 \wedge on(x,z)@t+1$ Axiom schemas for one operator at a time: \forall x, \forall y, \forall y', \forall z, \forall z', \forall t / y <> y' \land z <> z': \neg (puton(x, y, z)@t \land puton(x, y',z')@t) Frame axiom schemas: \forall p, \forall t: p@(t+1) \Rightarrow (p@t \vee a₁p@t \vee ... \vee a_np@t)

 $\neg p@(t+1) \Rightarrow (\neg p@t \lor a_1 \neg p@t \lor ... \lor a_n \neg p@t)$

Applications

- Generate scenarios for a mobile robot (STRIPS, Richard Fikes, 1971).
- Advise the disassembly of a car engine (NOAH, Earl Sacerdoti, 1974).
- Organize the logistics for the military invasion of Iraq (SIPE, David Wilkins, 1980).
- Reactivate the electronic components of a spatial probe flying around Jupiter (DEEP SPACE, approx. 2000).
- Debug a xerox machine.
- Animate characters in a video game (Eric Jacopin, 2010).
- Interactive story telling (Marc Cavazza, 2010).

• ...

History

- 1971: STRIPS by Richard Fikes.
- 1977: NOAH by Earl Sacerdoti
- 1981: MOLGEN by Mark Stefik
- 1986: IxTeT by Malik Ghallab.
- 1986: SIPE by David Wilkins.
- 1987: TWEAK by David Chapman.
- 1991: SNLP by Mac Allister & Rosenblitt.
- 1992: UCPOP by Anthony Barrett & Daniel Weld.
- 1992: BLACKBOX/SATPLAN by Henry Kautz & Bart Selman.
- 1997: GRAPHPLAN by Avrim Blum & Merrick Furst.
- 2000: HSP by Hector Geffner.
- 2000: YAHSP by Vincent Vidal.
- 2001: FF by Jörg Hoffmann,
- 2005: CPT by Vincent Vidal.
- 2007: DAE by Marc Schoenauer.

References

- Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010, 3rd edition. Chapiter 11.
- Malik Ghallab, Dana Nau, Paolo Traverso. *Automated Planning: Theory and Practice*. Morgan Kaufmann, San Mateo, CA, May 04, 635 pages.
- PDDL 3.1.: see Wikipedia.
- Conferences:
 - International Conference on Automated Planning and Scheduling (ICAPS). http://www.icaps.org
 - International Joint Conference on A.I. (IJCAI). http://www.ijcai.org
 - European Conference on A.I. (ECAI). http://www.ecai.org
 - National Conference on A.I. (AAAI). http://www.aaai.org

• Journals:

- A. I. Journal (AIJ). http://www.elsevier.com/wps/find/journaldescription.cws_home/505601/description#description
- Journal of A.I. Research (JAIR). http://www.jair.org/

Demonstration --Constraint Programming Temporal planner (CPT).

Part II --- Embedded planning

Introduction

Assumptions of classical planning

- Hypothesis 1: The agent is the unique cause of change.
- <u>Hypothesis 2</u>: The environment is totally observable, the agent has perfect knowledge of the environment.

• ...

- What if the environment is dynamic, e.g., includes other agents?
- What if the agent partially knows its environment (perception)?

Conditionnal Planning (1 / 3)

- An operator can fail (non-determinism).
- At some times in the plan, observe what happens in the environment.
- Conditionnal and disjunctive effects.
- A conditionnal plan [A₁ ; A₂ ; ... ; A_n] is a tree composed of steps
 IF <test> THEN <plan-T> ELSE <plan-F>
- Example: Domain of the vacuum cleaner in a two-room apartment.
 - Operators: Left, Right, Clean.
 - Fluents: AtLeft, AtRight, LeftClean, RightClean.
 - Rules: Cleaning a clean room can drop dust; Moving to a clean room can drop dust.
 - Action(Left, Pre: AtRight, Post: AtLeft ∨ (AtLeft ∧ IF LeftClean THEN ¬ LeftClean))

Conditionnal Planning (2 / 3)

April 29, 2016 Seminar VEH08, VEDECOM 23

Conditionnal Planning (3 / 3)

April 29, 2016 Seminar VEH08, VEDECOM 24 24

Online Re-planning (1 / 19)

Goals

 g_1 g_2 ...

9,

Online Re-planning (2 / 19)

Online Re-planning (3 / 19)

Online Re-planning (4 / 19)

Online Re-planning (5 / 19)

Online Re-planning (6 / 19)

Online Re-planning (7 / 19)

Online Re-planning (8 / 19)

Online Re-planning (9 / 19)

Online Re-planning (10 / 19)

Online Re-planning (11 / 19)

Goals

 g_1 g_2 g_1

Online Re-planning (12 / 19)

Goals

 g_1 g_2 ...

Online Re-planning (13 / 19)

Online Re-planning (14 / 19)

Online Re-planning (15 / 19)

Online Re-planning (16 / 19)

Online Re-planning (17 / 19)

Online Re-planning (18 / 19)

Online Re-planning (19 / 19)

Limitation of classical planning

April 29, 2016

Software architecture: Sense-Plan-Act [Nilsson 80]

2-level Software Architecture [Hayes-Roth et al. 95]

2-level++ Software Architecture [Baltié et al. 07]

LAAS Software Architecture [Alami et al. 98]

Conclusion

- $S_{out} = S_{in} \cup Post + \setminus Post$ is wrong in dynamic multi-agent environments.
- Need for a taxonomy of environments.
- Where do goals come from? Motivations.
- Status of planning:
 - Cognitive psychology (Jean-Michel Hoc).
 - Post hoc rationalization (Lucy Suchman).
 - Opportunistic planning (blackboard, Barbara Hayes-Roth).

References

[Alami et al. 98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand. *An Architecture for Autonomy*. In *International Journal of Robotics Research* (Special Issue on `Integrated Architectures for Robot Control and Programming"), Vol 17, N° 4, April 1998. LAAS Report N°97352.

[Baltié et al. 07] J. Baltié, E. Bensana, P. Fabiani, J. – L. Farges, S. Millet, P. Morignot, B. Patin, G. Petitjean, G. Pitois, J. – C. Poncet. *Multi-Vehicle Missions: Architecture and Algorithms for Distributed On Line Planning*. In Dimitri Vrakas and Ioannis Vlahavas (eds.), Artificial Intelligence for Advanced Problem Solving Techniques, Information Science Reference. December 2007.

[Gat 98] Gat, E. *Three-layer architectures*. In D. Kortenkamp et al. Eds. A.I. and mobile robots. AAAI Press, 1998.

[Hayes-Roth et al. 95] Hayes-Roth, B.; Pfleger, K.; Morignot, P.; & Lalanda, P. *Plans and Behavior in Intelligent Agents*. Knowledge Systems Laboratory, KSL-95-35, Stanford Univ., CA, March, 1995.

[Nilsson 80] Nils J. Nilsson. *Principles of Artificial Intelligence*. Palo Alto, CA, Tioga. 1980.

[Wolfe et al. 10] J. Wolfe, B. Marthi, S. Russell. *Combining Task and Motion Planning for Mobile Manipulation*. In Proceedings of the International Conference on Automated Planning and Scheduling, Toronto, Canada, 2010.

Thank you for your attention!