
Learning Constraint-based Strategies for
On-Board Dynamic Planning and Scheduling of
Logistics Missions for Autonomous VTOL-UAV

No Author Given

No Institute Given

Abstract. This paper proposes a constraint programming approach for
activities optimization of a specific type of unmanned aerial vehicle
(UAV), able to perform vertical-take-off-and-landing (VTOL). The re-
source constrained optimization approach can be effective in flight, sup-
porting the operator in all mission phases of future logistics scenarios. We
propose a constraint programming model and a learning-based search al-
gorithm approach for path-planning & scheduling and re-planning, using
representative topological maps of navigation waypoints and edges. Both
model and optimization algorithms, together with a constraint solver,
are integrated as part of a software agent architecture that commands
the UAV. Actual flight simulation experiments of the software agent on
realistic scenarios are reported, showing correct performances for an em-
bedded usage, in particular regarding the online re-planning and learning
of heuristic upper bounds on path length.

Keywords: Path-planning · scheduling · re-planning · learning heuris-
tics · application · VTOL aircraft

1 Introduction

Unmanned Aerial Vehicles (UAV) are widely used for civilian logistic, search and
rescue, first responder in disaster relief, security and other defense operations. A
rotorcraft based UAV can easily perform stationary observations, can land and
take-off easily but has limited endurance, cannot fly fast and its energy expen-
diture is hard to plan. In turn, resource constrained navigation is easier with
a fixed wing, that can perform long range missions but needs to orbit around
a waypoint to acquire and observe a target, and cannot land. Innovative types
of UAV, that have Vertical Take Off and Landing (VTOL) capabilities provide
interesting agility for navigation, can fly long range and can perform several
”pick and drop” logistic actions in a same mission (see Fig. 1). Usage of such
VTOL-UAV can be intense, having to satisfy several requests on the fly and
must adapt to its environment (traffic, obstacles, landing areas). Autonomous
flight is an attractive concept for this VTOL-UAV as it limits operators interac-
tions, and save platform costs from life support equipment. With such concept,
appropriate navigation plans are needed and several scheduling constraints have

2 No Author Given

to be managed by both the platform and the remote operator, resulting from
environment activities and the operational demand. Two optimization problems
can occur several times during a mission:

– The vehicle endurance can be saved by minimizing energetic resource con-
sumption while satisfying mission duration constraints.

– In case of urgent missions, the operator will try to minimize the mission
duration while satisfying energetic constraints.

For VTOL-UAV, a consumption model is difficult to define and when com-
bined with scheduling constraints, the planning problem becomes hard to solve.
Simple approaches, such as finding a shortest path or using A*-like algorithms,
may not lead to efficient solutions and cannot meet scheduling constraints. The
core problem is also close to a Traveling Salesman Problem (TSP), for which
many algorithms are efficient but cannot be directly used with complex resource
constraints.

This paper proposes a hybrid constraint solving approach for VTOL-UAV
activity optimization, that can be used on-board, and support the operator in
all mission phases. The above planning and scheduling problem is formulated
as a dedicated Constraint Satisfaction Problem (CSP), and also as a Constraint
Optimization Problem (COP), developed with the GeCode [12] environment.

The hybridisation schema uses cost probing by learning and is two folds.
Firstly, the probe algorithm learns to solve a relaxed form of the problem and
estimates a heuristic upper bound to the cost function. Secondly, another probe
algorithm provides an order on problem variables (aka labeling).

In both cases, the principle is to use the solution of a low-computational
relaxed problem (aka probing [?]) to improve the current solving of the problem,
as well as the performances of path planning & scheduling. A variant of the latter
is used for re-planning, which is in fact is a specific case of online planning. It
reuses a past solution to a close problem in order to structure the current solving
process.

Such CSP/COP model is also used as a deliberation capability as part of the
software architecture of the autonomous VTOL-UAV agent. It is synchronised
with other capabilities (e.g., simultaneous localisation and mapping, perception)
that are also integrated in this software agent used in simulation.

Experimental results on the performances of path planning & scheduling
are presented, demonstrating the interest in using this re-planning scheme and
in using machine learning to compute an upper bound on the cost function
of a COP. These performances suit the operational needs, enabling to use CP
path-planning & scheduling as a component of the software architecture of the
VTOL-UAV agent. Therefore realistic flight scenarios of the VTOL-UAV agent
are attainable and presented.

The paper is organized as follows: The next section presents the planning
& scheduling problem formulated as a constraint-based model. Section § 3 de-
scribes the associated heuristics used for search and then section § 4 presents a
constraint-based software architecture. Section § 5 provides experimental results

Title Suppressed Due to Excessive Length 3

on realistic benchmarks. Finally, section § 6 relates our work to the state of the
art, and section § 7 sums up our contributions.

Fig. 1. An example of a VTOL-UAV type fixed-wing unmanned aerial vehicle.

2 Navigation Model for VTOL-UAV

We describe a constraint-based model for solving and optimizing flight plans of
the VTOL-UAV using a composite planning and scheduling model. A solution
for this model is a discrete path with arrival times on waypoints, and flight du-
rations between two successive waypoints. The model is composed of a boolean
path-planning sub-model and a temporal scheduling sub-model, which are inter-
related. Note that we do not consider on board storage as a resource constraints
for this problem.

2.1 Boolean Model for Path-Planning

A topological map is a directed graph (V,E) where vertices v ∈ V are locations
and edges e ∈ E are elementary paths — edge (v, v′) is an elementary path
from location v to location v′. Variable Φv ∈ {0, 1} is equal to 1 iff vertex
v ∈ V is in the path (v is a waypoint), and 0 otherwise. As for vertices, variable
Φ(v,v′) ∈ {0, 1} is equal to 1 iff edge (v, v′) ∈ E is in the path, and 0 otherwise.
Vertices start ∈ V (resp., end ∈ V) are the starting (resp., ending) waypoints.
Set ω+(v) ⊂ V (resp., ω−(v) ⊂ V) represents the outgoing (resp., incoming)
edges for a given vertex v ∈ V .

∑
u ∈ ω+(v)

Φu =
∑

u ∈ ω−(v)

Φu = Fv ≤ N (1)

∑
u ∈ ω−(start)

Φu = N and
∑

v ∈ ω+(end)

Φu = N (2)

4 No Author Given

Since flow variables Φ are in {0, 1}, equation (1) ensures conservation of
the flow Fv on each vertex v, hence path connectivity and uniqueness. N is the
number of agents which can pass through a vertex (flow capacity), hence is set to
1 in our case — [4] relaxes this hypothesis and builds synchronization constraints
between two agents.

Equation (2) imposes limit conditions for starting and ending the path. These
two constraints provide a linear chain alternating pass-by waypoints in the topo-
logical map.

Φv = 1 (3)

Φv = 0 (4)

A waypoint v can be forced to be included into (resp., excluded from) the
path, with equation (3) (resp., equation (4)). start and end vertices follow equa-
tion (3). When a specific pick / drop action has to be executed on a given
waypoint, equation (3) is also enforced.

The path over vertices P = {v ∈ V / Φv = 1} is the set of waypoints the
agent passes through, including forced vertices start and end. As for vertices,
the path over edges is noted P ′ = {(v, v′) ∈ E / Φ(v,v′) = 1}.

2.2 Temporal Model for Scheduling

In order to provide sequential temporal information, we introduce several tem-
poral variables, defined as integer and binded to the previous model.

Variable Tv is the time at which an agent arrives at vertex v, variable Av is
the elapsed time during which it performs its action at vertex v. Variable D(v,v′)

is the duration of the agent for traversing edge (v, v′) ∈ E and variable S(v,v′) is
the average speed of the agent over edge (v, v′) ∈ E.

Tv +Av +D(v,v′) ≤ Tv′ ⇔ Φ(v,v′) (5)

Tstart = 0 (6)

||(v, v′)|| = S(v,v′)D(v,v′) +R and R < D(v,v′) (7)

Equation (5) ensures propagation of the arrival time Tv on vertices over edges,
starting at time 0 (equation (6)). Since equation (5) holds for waypoints only and
not for any pair of vertices (v, v′), this constraint is reified over variable Φ(v,v′)

— it holds for traversed edges only. Equation (5) links the present temporal
model to the previous boolean one. Equation (7) ensures that the average speed
S(v,v′) of the agent on edge (v, v′) ∈ E is the integer division of the constant
length ||(v, v′)|| of this edge, by its traversal duration D(v,v′). Variable R is the
remainder in this modulo operation. This sub-model is particularly interesting to
represent take off and landing actions, including picking and dropping objects or

Title Suppressed Due to Excessive Length 5

personals. Also note that the problem also consists in finding an adequate speed
that meets all constraints an may contribute to the cost optimization.

Tv ≤ T (8)

Tv ≥ T (9)

An upper (resp., lower) bound T on the passing time Tv at waypoint v can
be set by equation (8) (resp., equation (9)).

2.3 Constraints Specific to VTOL-UAV Missions

Inclusion / Exclusion Spheres The application covers VTOL-UAV in lo-
gistics missions close to a no-fly zone. In a civilian context, this can be due to
other traffics, while in disaster relief, defense or security, some danger could oc-
cur. Safe spheres (e.g., for refueling or emergency landing) and danger spheres
(where hazards are present) are defined. Let Si be a list of safe spheres and Se

be a list of danger spheres.

∀v ∈ P,∃s ∈ Si / v ∈ s (10)

∀v ∈ P,∀s ∈ Se, v /∈ s (11)

Equation (10) ensures that there is always one safe zone in which the aircraft
can land during path traversal (inclusion spheres). Since the 3D coordinates
of the vertices are known (vertices of a topological map are locations), as well
as the sphere center and radius, it is sufficient to remove from the graph (see
equation (4)) vertices with no inclusion sphere. Equation (11) ensures that all
danger zones (exclusion spheres) are avoided during path traversal. As above,
it is sufficient to remove from the graph (see equation (4)) vertices inside any
exclusion sphere. We note that spheres of Si and Se may include only a portion of
an edge between two vertices — this is left for future refinements of the geometric
model, resulting in additional equations Φ(v,v′) = 0 for removing edges, similar
to equation (4) for removing vertices.

In practice, these spheres remove a significant part of way-points to fly-by,
lowering problem sizes, which is reflected in our benchmarks. Further models,
more complex, may condition sphere inclusion or exclusion by VTOL-UAV speed
limits or/and fly-by dates.

Temporal Windows A temporal window can be represented in the model
above by using a conjunction of equations (8) and (9). That is, if x is a temporal
variable (e.g., Tv in previous section) and W = [min;max] is a temporal interval:
(i) variable x is included in W iff min ≤ x ∧ x ≤ max ; And (ii) variable x is
excluded from W iff x < min ∨max < x.

6 No Author Given

Inclusion windows simply reduces a variable domain x with equations (8) and
(9). However, exclusion windows involve an OR statement, i.e., a discrete dis-
junction ∨ over same equations, leading to different and more radical subsequent
searches starting from variable x in the solver control algorithm.

2.4 Optimizing VTOL-UAV Missions

Our application supports both CSP instances as well as COP. We define a cost
function f which value is computed on a solution s of the CSP model. The
cost leads to further backtracking and search with the additional constraint
f < f(s) dynamically posted when encountering a solution s. Therefore, non-
optimal solutions of decreasing cost are evaluated, until the optimal solution is
found (the CSP solver proves that no other better solution exists in the search
tree).

The possible cost functions f are:
None No cost function: Constraint optimization with no cost function is con-
straint satisfaction.
Waypoints f = ||P || : Constraint optimization minimizes the number of ver-
tices in the path (shortest path in terms of waypoints). This is interesting to
avoid an interaction with the operator whenever a change in direction is needed
over a waypoint
Makespan f = maxv∈P (Tv) : Constraint optimization minimizes the latest ar-
rival time on a vertex, i.e., f is the makespan of the path P (shortest path in
terms of time).
Energy f =

∑
(v,v′) ∈ P ′ Power(v, v

′)D(v,v′) : Constraint optimization mini-

mizes the total energy consumed along the path (shortest path in terms of en-
ergy). To define the variable Power over an edge (v, v′) of the path, a simplified
power consumption model is defined: The idea is to have a set of equations which
takes into account in a qualitative manner the power consumption of the UAV
as a function of the path which the aircraft follows. Such model can be further
calibrated with real engine consumption. The variable Power(v, v′) over an edge
(v, v′) is modeled using the following types of consumption laws:

– When the VTOL-UAV is flying at constant altitude, the power consumption
varies linearly as a function of its speed.

– When the VTOL-UAV is climbing, the power consumption varies (i) as a
quadratic function of the angle of attack and (ii) as a linear function of its
speed.

– When the vehicle is descending, the power consumption (i) is inversely pro-
portional to the norm of angle of attack and (ii) it varies as a linear function
of its speed.

Length f =
∑

(v,v′)∈P ||(v, v′)|| : Constraint optimization minimizes the

total length of the path P (shortest path in terms of length).
The cost functions on energy and path length can be dual, and a cost valu-

ation for one type can set an upper bound over the quantity used by the other

Title Suppressed Due to Excessive Length 7

on.e — This corresponds in fact to a low-class dominance in multi-criteria opti-
mization.

2.5 Learning Heuristic Upper Bounds on Path Length

The cost function can be related to the length of the path, which we refer to
as path cost. In such cases, introducing a heuristic upper bound on the path
cost can dramatically increase search performances. The more the upper bound
value is close the the actual optimal path cost, the more sub-optimal areas of the
search space with higher path costs can be cut. We propose a heuristic to provide
an upper bound based on learning methods and observe that search performance
gets significantly improved upon with early branch cuts in the search tree (see
section ”Experiments”). Those cuts result from an additional constraint f < B,
where f is the cost function and B the heuristic upper bound. We describe a
machine learning approach used to build B based on iterative next-best waypoint
estimation in a list of mandatory waypoints which require visiting.

Graph convolutional networks (GCNs) are generalizations of convolutional
neural networks (CNNs), a popular type of neural network for image classifica-
tion, using non-Euclidean graphs [1]. The input of a GCN is a graph G = (V,E).
Unlike CNNs, their receptive field is not based on a pixel sliding architecture,
but rather on the graph structure. Edges E define the neighborhood of each node
v ∈ V . This enables invariant nodes permutations, which is a strong advantage
when dealing with graph-structured data. A common point with CNNs is that
filtering parameters are shared over all locations in the graph, justifying the con-
volutional denomination. Since path-planning is performed in a topological map,
i.e., a graph, we use GCN as a general representation to estimate path cost.

To use GCNs on a topological map, we consider the following relaxation of the
original problem: X = (v, v′,M). Here, X refers to a problem where v ∈ V is the
start vertex (considered as the first GCN input feature), v′ ∈ V is the end vertex
(second GCN input feature), and M = (v1, v2, ..., vq) is a list of q mandatory
waypoints (third GCN input feature), i.e., waypoints forced to be visited (see
equation (4) in the previous model). The input of the GCN function is the
group of vertex features X and the topological map. The output is a probability
distribution Π over all vertices in V : GCN(X, (V,E)) = Π. The GCN is trained
so that Π assigns to each vertex in the topological map the probability of being
the next best mandatory waypoint to visit, ”best” in the sense of reducing the
total length of the path over vertices. The training strategy for the GCN is self-
supervised, i.e., training relaxed problems are randomly generated, automatically
solved with a A*-based algorithm presented in [11] and each problem is labelled
with the solution found.

The iterative algorithm for computing B using the trained GCN is pictured
as follow:

1. The shortest paths between all pairs of vertices of V is computed off line
with Dijkstra’s algorithm and stored in matrix SP , i.e., spi,j ∈ SP is the
shortest path to travel from vertex vi to vertex vj .

8 No Author Given

2. GCN is applied to the initial path-planning problem X0 = (start, end,M)
by creating the group of vertex features: GCN(X0, (V,E)) = Π0.

3. Let v0best ∈ M be the mandatory waypoint with the highest probability in
Π0. This vertex is recommended by the GCN as the best next waypoint from
the start vertex.

4. Let X1 be (v0best, end,M \ {v0best}). That is, X1 is the same path-planning
problem as X0, but (i) starting at the previously visited vertex v0best, which
is now the new start vertex; And (ii) with the set of mandatory waypoints
minus this new start vertex v0best.

5. GCN is applied to X1, resulting in a new vertex v1best ∈ M as the best
mandatory waypoint, i.e., the waypoint with the highest probability in Π1.

6. Repeat from step 4 to build X2, ..., Xi, ..., Xq−1 and v2best, ..., v
i
best, ..., v

q−1
best

until no mandatory waypoint in M is left to visit.

The above algorithm results in sorting M as v0best, v
1
best, ..., v

q−1
best as waypoints

to travel from start to end. The upper bound B is then defined by the sum
of the shortest paths found in SP according to this sort, i.e., the length of the
path if we visit each waypoint in the order suggested by the GCN. The list of
mandatory waypoints M is fed with the vertices of the topological map which
are forced to be included (equation (3)).

3 Heuristics

Performances for solving a realistic CSP model highly depends on heuristics,
either over variables (which variable to consider next?) or over values (which
value of the chosen variable to consider next?). We now present these two kinds
of heuristics.

3.1 Heuristics on Variables

The different variables of the model above are considered in the following static
order: Φv, Φ(v,v′), S(v,v′), D(v,v′), T(v,v′) and then Tv. The planning (boolean)
model is solved first before the scheduling (integer) model is, since this order
favors finding waypoints before assigning time to arrival at a node — it is also
possible that a node is rejected from the path because it occurs too late or too
early (a scheduling reason of rejection of a node from the path), but this happens
more scarcely on average.

Each group of variables is considered using the labeling heuristics, i.e., along
an arbitrary static sort, except for variables Φv, the most important variables
since they define a path, which are sorted specifically: Variables Φv are sorted by
(i) computing a constraint-free path from start to end using least-cost algorithm
A* [5]; and (ii) computing a distance from any node (not only those inside the
path, i.e., waypoints) to the path just found.

For this, firstly, a state/node of algorithm A* is identified to a node in the
above model, i.e., this algorithm plans for locations without considering any

Title Suppressed Due to Excessive Length 9

other potential constraint, e.g., forced included/excluded nodes (see equations
(3) and (4)) or deadlines (see equations (8) and (9)). The cost function of a
node is defined by f = g + h, where (i) g is the length of the path from start
to the current node, i.e., the sum of the lengths of the successive edges ||(v, v′)||
involved from start to the current node; and (ii) h is the fly-by distance from
the current node to the end node — A* nodes are identified to locations in a
topological map and thus own 3D coordinates.

Secondly, the distance from any node v of a topological map to this path
is defined by the number of edges required to travel from v to the closest node
inside the above path — hence nodes on the path are at distance 0, nodes at one
edge far are at distance 1, etc. This is computed by (i) initializing the distance
inside the just found path to 0; And by (ii) propagating a label (i.e., the distance
from the current node to the path) from the nodes of the previous path (distance
0) to the neighbors of their nodes (distance 1), and then in turn to the neighbors
of these nodes (distance 2), etc, until no node remains unlabelled. Since there
might be several ways to label a node (i.e., a node might be reached by following
several propagation routes from the path), the label on a node is changed iff it is
greater than the current propagated label (the distance is the smallest number
of edges to reach the path).

These two steps result in assigning a distance d to each node v of a topological
map, which is used as a static sort for the labeling heuristics on variables Φv. In
addition to this sort, when d = 0 on nodes (equal rating of nodes in the sort),
variables Φv are secondarily sorted according to the path order, from start to
end, found by the previous algorithm A* — actually, variables Φv are sorted in
reverse order, for potentially backtracking from the end of the sorted list start
back to the beginning of this list end.

Since these heuristics do not change at solving time, they do not lead to
processing overhead during search — as opposed to dynamic search strategies
[10].

3.2 Heuristics on Values

Heuristics on values is performed by (i) searching each temporal variable Tv
of the scheduling model by increasing values from 0 (i.e., Tstart, according to
equation (6)) up to a fixed time horizon (an arbitrary large constant integer) —
hence searching for small values of Tv first; And by (ii) searching each boolean
variable Φv of the planning model by first rejecting the node from the path (value
0) and then accepting it (value 1).

4 Planning and Execution

Things do not always unfold as planned for, due to environmental changes —
perceived at execution time and not planned for at planning time. We now
describe an on-line planning scheme, due to dynamic environments.

10 No Author Given

4.1 Software Architecture of the Autonomous Agent

On-line planning is the activity of planning the future course of actions of an
autonomous agent, while it is actually executing it. Approaches for dealing with
this contradiction usually involve cognitive architectures (see a survey in [6])
which set layers (e.g., deliberation, reaction) inside an autonomous agent.

On-line path-planning, and not action-planning, plans the future locations by
which an autonomous agent should pass, while the agent is actually moving from
one location to another. Path planning does not represent the logics of unfolding
of actions along a path — a restricted version of action planning, i.e., action
planning can represent the location where each action occurs, as a by-product
of reasoning over action description models.

Now, in our case the main activities of the agent are (i) reasoning to perform
path planning and scheduling (see previous sections), (ii) performing physical ac-
tions on vertices/locations and (iii) performing physical actions on edges/elementary-
paths. The latter involves an action ”flying” on edges, with only its duration
D(v,v′) on an edge/path (v, v′) represented in the model (see previous section).
The previous second point ii also involves the action’s duration Av on ver-
tex/location v, which is the only represented characterization of the action per-
formed on v. This can be for example temporary landing, picking or droping an
object. Now, the path-planning & scheduling reasoning activity might take a very
small amount of time in real-time to perform and finish, or might take a gigantic
amount of time to find paths over long-distance start/end vertices with boolean
and temporal constraints — a common phenomenon, the general problem with
deliberative activities and the raison d’être of software agent architectures (and
even cognitive architectures) in general. Agent activities, potentially yielding to
re-planning events, are:

1. Localization and mapping (aka SLAM): Given sensor data, this consists in
both locating the agent in a metric map and locating perceived obstacles on
this map. Both need to be performed together, since if the agent can locate
itself on a metric map (localization), then it can locate perceived obstacles
on the metric map relatively to its own localisation.

2. Perception: Extracting symbols from raw sensory data, e.g., recognizing
other aircraft from raw sensor data.

3. Data fusion: Augmenting the quality of perceived information by using raw
data coming from several sensors instead of one sensor only.

4. Path planning: Computing a path from a given vertex/location to another
one, given boolean and temporal constraints (see previous sections).

5. Control: Ground control can also provide mission and no-fly zone updates.
Turning high-level commands (e.g. the next location to reach) into a series
of low-level voltage commands to the actuators of the autonomous agent.

A more detailed description of those algorithms and components (except for
path planning) is out of the scope of the paper. This above chain of computation,
usual in the Intelligent Transportation Systems community, illustrate the data
flow inside the architecture of the autonomous agent.

Title Suppressed Due to Excessive Length 11

4.2 Path Re-Planning

Path re-planning is performed as a special case of online path-planning.
First, a path from start to end is planned for with the model of previous

section. Second, execution starts, i.e., the agent moves from vertex/location to
vertex/location as prescribed by the previously computed path — so far, this
is the planning-then-execution paradigm. But now an unexpected event occurs,
which makes the rest of the current path infeasible. The re-planning process is
threefold:

1. The current path is stored;
2. Path-planning is launched again, with (2.a) the last encountered vertex/location

as the new start vertex, the end vertex unchanged, as are the other boolean
and temporal constraints; and with (2.b) the path in step 1 (an ordered list
of vertices {vi}) is used as static sort on variables {Φvi} in the heuristics on
variables, instead of using the A* algorithm (see section 3);

3. The newly computed path is executed by the agent (i.e., the agent moves
from one vertex/location to the next one), starting at its current location
right after the previously passed vertex/location.

In other words, re-planning is considered as using planning as a piece of
advice (a heuristics) for the next planning problem.

5 Experimental Results

The model above has been implemented using the CP solver GeCode [12] on
a rugged computer with a quad-core 64 bits x86 CPU and 32 Gb of RAM.
This model with the CSP solver library has also been embedded as a software
component in a graph of components (see § 4) managed by the data flow tool
RTMaps [3].

For the purpose of this paper, fictitious but realistic maps have been used,
supporting real life scenarios. As an example, a first earthquake scenario in
San Diego features 81 waypoints distributed unevenly on three flight levels (i.e.,
ground level, 500m level and 1000m level) to match the terrain’s structure and
elevation. Those 81 waypoints are linked by 2628 edges. A birdview of the map
is given in Fig. 2, while a 3D view showing the flight levels and the edges is given
in Fig. 3. Two other scenarios have also been used, damage assessment during a
flooding in the Troyes suburb (in France), and rescue for avalanches in the Alpes
(in France and Italy).

Path Re-Planning In the above San Diego topological map, the vehicle flies
from start to a finish point on the map with the aim of minimizing mission time
under the constraint of a maximum energy consumption not to be exceeded. On
top of that, three waypoints, in green in Fig. 4, are mandatory, but the planner
is free to decide in which order it will visit them. During initial planning, all

12 No Author Given

Fig. 2. Birdeye view of a map in San Diego region created as an example.

waypoints are accessible all the time. Before the start of the mission, initial path
and schedule are formulated by the solving algorithm. On the San Diego map
in fig. 4, such solution is materialized by the grey path. It fulfills mission goals,
visits all three mandatory waypoints and sets the vehicle speed to the lowest
value compatible with the mission’s maximum time constraint, thus minimizing
energy consumption (speed is proportional to the thickness of the grey line on
the map).

At roughly one third into the original plan, that corresponds to the middle
of the cruise flight, mission parameters change as follows :

– One part of the map, denoted by the red circle, is declared as a no-fly zone
and it is now mandatory to plan around it.

– One of the mandatory waypoints, on the top left hand corner of the map
is now accessible only during a short time window which happens to be
different from the one used in the original plan.

The above event triggers re-planning of the mission and the new plan is shown
in figure 5. As it can be seen, the planner has been able to take into account
all new constraints to come up with an acceptable combination of waypoints
and speed for fulfilling mission goals. The vehicle has to speed up in order to
make it to the top left hand corner mandatory waypoint within the allowed time
window, as shown by the thicker grey line. Once this waypoint has been visited,
it can afford to slow down a little but has to maintain a higher speed than in
the initial path for yet another edge. This is due to the fact that the new path
is longer than the initial one and the vehicle thus has to be faster to still make

Title Suppressed Due to Excessive Length 13

Fig. 3. 3D view of the San Diego map showing all nodes and edges.

Fig. 4. Top view of the result of the initial mission plan for the San Diego area.

it in time to the finish line. Once the arrival on time is secured, the plan calls
for the vehicle to slow down in order to save energy.

To measure the impact of re-planning vs. planning from scratch, several prob-
lem instances over several topological maps have been considered: First, a prob-
lem instance (v, v′,m) is set in a specific topological map, where v ∈ V is a start
node, v′ ∈ V a destination node and m ∈ V a mandatory waypoint to visit.
Planning for this problem instance is performed and a solution path is found.
A new problem instance is created by moving the start node v to another node
further ahead on the solution path, and locally changing mandatory waypoint
m. This new planning problem instance is then solved from scratch but also re-
planned using the search data of the original problem, in both cases without the
upper bound on path length. The mean time to the best solution is measured
for both approaches in figure 6. This process is repeated for the three different
problem instances on each topological map in order to measure a mean value.

14 No Author Given

Fig. 5. Top view resulting of the re-planning process, taking into account time window
and no-fly zone in the San Diego area.

Map number of Planning Re-planning
(3 instances each) nodes MT to BS (ms) MT to BS (ms)

San Diego 52 458 90
Troyes 48 94 44
Alpes 23 3928 923

Fig. 6. Mean time (MT) to the best solution (BS), for planning and re-planning (with-
out upper bound on path length).

As a result, the re-planning mean time to the best solution is observed to vary
between the half and the fifth of the planning-from-scratch one. (The San Diego
topological map includes two levels, instead of three in the re-planning scenario
of the previous section, to involve a number of nodes close to those of the other
topological maps of figure 6).

Upper Bound on Path Length To measure the impact of the upper bound
on path length, planning with and without upper bounds has been measured
over approx. 20 problem instances over the 3 scenarios: San Diego earthquake,
Troyes suburb flooding and Alpes avalanches. In each case for each region, the
mean time to the first solution and to the best solution are measured (2nd et 4th
column of figure 7). The mean cost (i.e., the path length) of the best solution is
also provided (3rd column of figure 7). As a result,, for the map of San Diego,
the best solution is found faster with upper bound than without in 100% of
problem instances; Similarly, for the map of Troyes, the ratio is 83%; For the
map of Alpes, the ratio is 72%. Lastly, the learning model we use for upper
bound estimation is trained one hour on each graph before use. Training is done
on data generated with a dropout keep rate of 0.9 to prevent overfitting and the
ADAM optimizer [7] with an initial learning rate of 10−4.

Title Suppressed Due to Excessive Length 15

Map without upper bound with upper bound
MT to MC to MT to MT to MC to MT to

(20 instances) BS (ms) BS (m) FS (ms) BS (ms) BS (m) FS (ms)

San Diego 589 19928 86 485 19928 485
Troyes 88 45856 78 79 45856 79
Alpes 4415 25804 3193 2434 25804 2434

Fig. 7. Mean time (MT) in millisecond to the best solution (BS), mean cost (MC) in
meter of this best solution, and mean time in millisecond to the first solution (FS),
with and without the learned upper-bound on path length, measured on 20 instances
for each 3 regions.

6 Related Work

The A* algorithm is an usual way to find a path of minimal cost from a start state
to a potential goal state [5]. If this algorithm is useful to search for a solution
in a graph of states, it is not applicable for several agents, each one search-
ing for its solution state, and which potentially communicate (setting N > 1
in equation (1)). Also, it becomes difficult with this algorithm to incorporate
mandatory states, except by introducing sub-solution states. Conversely, con-
straint programming [8] usually proposes languages or interfaces with better
expressiveness (e.g., for mandatory / excluded waypoints, or mandatory / ex-
cluded edges, time windows).

[9] propose an anytime and dynamic version AD* of the algorithm A*, which
can be interrupted (and return a solution the quality of which increases with
the alloted time [2]) and which can cope with changing environments. If the
notion of anytime path-planning in a CSP context surely is interesting, our
approach regarding re-planning is more elaborated regarding largely changing
environments.

[13] propose the notion of constraint network on timelines, to model discrete
event dynamic systems and their properties, and also propose an application to
aircraft having to perform actions on waypoints. Also defining a more elabo-
rated model than ours regarding action representation, that approach proposes
a beginning implementation whereas we quantify performances in our full im-
plementation in a software architecture.

7 Conclusion

We have presented a CSP model for path-planning, scheduling and re-planning.
This model with its CP solver library has been embedded as a component in the
computation chain controlling an agent: our application involves VTOL-UAV
in logistic missions close to war zones. This model has been experimented on
realistic scenarios, and exhibits performances acceptable by an operational user.
In addition, learning an upper bound on the cost function of this model leads to
shorter performances, as intuition dictates, due to early cuts in the search tree.

16 No Author Given

References

1. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

2. Dean, T., Boddy, M.: An analysis of time-dependent planning. In: National Con-
ference on Artificial Intelligence (AAAI) (1988)

3. DuLac, N.: Rtmaps project web site. Tech. rep. (2020),
https://intempora.com/products/rtmaps.html

4. Guettier, C.: Solving planning and scheduling problems in network based opera-
tions. In: Proceedings of Constraint Programming (CP) (2007)

5. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems, Science and Cybernetics
4(2), 100–107 (1968)

6. Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: a survey. Artificial
Intelligence 247, 10–44 (2017)

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015)

8. Laurière, J.L.: A language and a program for stating and solving combinatorial
problems. Artificial Intelligence 10, 29–127 (1978)

9. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic
a*: An anytime, replanning algorithm. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS) (2005)

10. Martinez, T., Fages, F., Soliman, S.: Search by constraint progapation. In: Proceed-
ings of the 17th International Conference on Principles and Practice of Declarative
Programming. pp. 173–183 (2015)

11. Osanlou, K., Bursuc, A., Guettier, C., Cazenave, T., Jacopin, E.: Optimal solv-
ing of constrained path-planning problems with graph convolutional networks and
optimized tree search. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 3519–3525. IEEE (2019)

12. Schulte, C., Lagerkvist, M., Tack, G.: Gecode project web site. Tech. rep. (2019),
https://www.gecode.org/

13. Verfaillie, G., Pralet, C., Lemâıtre, M.: How to model planning and scheduling
problems using constraints networks in timelines. The Knowledge Engineering Re-
view 25, 319–336 (2010)

