SAT solvers for planning

Philippe Morignot

The planning problem

- Action planning = plan synthesis = generation of action plans: Activity of constructing a plan.
- Planner = task planner = action planner = A.I. planner: software which constructs a plan.

Planning Domain Definition Language: domain

• Qualification / ramification problem

P	Planning Domain Definition	Lan	guag	ge:
	problem			L C
(define	(problem blocks-24-1) (:domain blocks) (:objects X W V U T S R Q P O N M L K J I H G F E D C A B) (:init (CLEAR K) (CLEAR I) (ONTABLE C) (ONTABLE O) (ON K F) (ON F T) (ON T B) (ON B G) (ON G R) (ON R M) (ON M E) (ON E J) (ON J V) (ON V N) (ON N U) (ON U H) (ON H C) (ON I A) (ON A P) (ON P Q) (ON Q D) (ON D W) (ON W X) (ON X S) (ON S L) (ON L O) (HANDEMPTY))	K F T B G R	I A	P Q M B G F K E R A W T N J
	(:goal (and (ON L C) (ON C P) (ON P Q) (ON Q M) (ON M B) (ON B G) (ON G F) (ON F K) (ON K E) (ON E R) (ON R A) (ON A W) (ON W T) (ON T N) (ON N J) (ON J U) (ON U S) (ON S D) (ON D H) (ON H V) (ON V O) (ON O I) (ON I X))))	M E J V N U H C	P Q D W X S L O	U S D H V O I X

Planners

- Planners in a plan space (Dan Weld).
- Planners using forward search in a state space (Jorg Hoffman, Hector Geffner).
- Planners using backward search in a state space (M. Helmert).
- Planners using evolutionnary algorithms (M. Schoenauer)
- Planners using temporal logic (P. Doherty).
- Planners using constraint programming (V. Vidal).
- Planners using SAT solvers (H. Kautz & B. Selman, J. Rintanen).
 Planning as Satisfiability: Heuristics

Jussi Rintanen

Institute for Integrated and Intelligent Systems, Griffith University, Queensland, Australia

Principle

- →1. Set the length of the plan to n (= 1)
 - 2. Encode the planning problem of size *n* as a propositional formula:

initial_state ∧ *all_plans_n* ∧ *goals*

- 3. Run a SAT solver
- 4. IF solution found THEN decode // SUCCESS
- –5. Increment *n*
 - Improvement: Try plan lengths in parallel.

Encoding

- Goals: on(A,B)@T ∧ on(B,C)@T
- Initial state: clear(C)@0 ^ on(C,A)@0 ^ clear(B)@0
 (^ ¬ on(A,C)@0 ^ ¬ on(A,B)@0 ^ ¬ on(B,C)@0 ^ ¬ on(B,A)@0
 ^ on(C, B)@0 ^ ¬ clear(A)@0) // hypothèse du monde fermé
- Axiom schemas on preconditions:

$$\forall x, \forall y, \forall z, \forall t:$$

 $puton(x, y, z)@t \Rightarrow on(x, y)@t \land clear(x)@t \land clear(z)@t$

- Axiom schemas on effects:
- $\forall x, \forall y, \forall z, \forall t:$

 $on(x,y)@t \wedge clear(x)@t \wedge clear(z)@t \wedge puton(x,y,z)@t \Rightarrow clear(y)@t+1 \wedge on(x,z)@t+1$

- One operator at a time:

$$\forall x, \forall y, \forall y', \forall z, \forall z', \forall t / y <> y' \land z <> z':$$

- ¬ (puton(*x*, *y*, *z*)@*t* ∧ puton(*x*, *y*', *z*')@*t*)
- Frame axiom schemas:

$$\begin{array}{ccc} \forall \ p, \forall \ t: & & \left[\begin{array}{c} p@(t+1) \Rightarrow (& p@t \lor a_1{}^p@t & \lor ... \lor a_n{}^p@t \) \\ \neg \ p@(t+1) \Rightarrow (\neg \ p@t \lor a_1{}^{\neg p}@t \lor ... \lor a_n{}^{\neg \ p}@t \) \end{array} \right] \end{array}$$

Algorithms

<u>Conflict-directed Clause Learning:</u>

The main loop of the CDCL algorithm (see Fig. 1) chooses an unassigned variable, assigns a truthvalue to it, and then performs unit propagation to extend the current valuation v with forced variable assignments that directly follow from the existing valuation by the unit resolution rule. If one of the clauses is falsified, a new clause which would have prevented considering the current valuation is derived and added to the clause set. This new clause is a logical consequence of the original clause set. Then, some of the last assignments are undone, and the assign-infer-learn cycle is repeated. The procedure ends when the empty clause has been learned (no valuation can satisfy the clauses) or a satisfying valuation has been found.

 <u>Heuristic for variable selection:</u> for a given goal, choose an action that achieves the goal and that can be taken at the earliest time at which the goal can become true.

	ř i	LAMA					
		Mp	Μ	2008	2011	FF	
1998-GRID	5	5	3	5	5	5	
1998-GRIPPER	20	20	20	20	20	20	
1998-LOGISTICS	30	30	30	29	30	30	
1998-MOVIE	30	30	30	30	30	30	
1998-MPRIME	20	20	18	20	20	19	
1998-MYSTERY	19	19	18	19	14	16	
2000-BLOCKS	102	63	82	54	95	80	
2000-FREECELL	60	45	32	59	59	60	
2002-DEPOTS	22	22	22	18	22	22	
2002-DRIVERLOG	20	20	19	20	20	16	
2002-ZENO	20	20	18	19	20	20	
2004-AIRPORT	50	50	48	38	38	39	
2004-OPTICAL-TELEGRAPH	14	14	14	3	14	13	
2004-PHILOSOPHERS	29	29	29	12	14	14	
2004-PIPESWORLD-TANKAGE	50	38	11	38	41	22	
2004-PIPESWORLD-NOTANKAGE	50	41	20	44	44	36	
2004-PSR-SMALL	50	50	50	50	50	43	
2004-SATELLITE	36	35	35	31	36	36	
2006-PATHWAYS	30	30	30	28	28	20	
2006-ROVERS	40	40	40	40	40	40	
2006-STORAGE	30	30	25	21	20	18	
2000-BIORREL 2006 TPP	30	30	20	30	30	28	
2006-TRUCKS	30	21	22	8	15	11	
2008-CYBER-SECURITY	30	30	30	29	20	4	
2011 BARMAN	20	10	0	17	20	0	
2011-ELEVATORS	20	20	1	20	20	20	
2011 FLOORTILE	20	20	20	20	6	5	
2011 NOMVSTERV	20	17	17	12	18	Ă	
2011 ODENSTACKS	20	17	0	18	20	-90	
2011-OF ENSTRONS 2011 DARCORINTER	20	- 20	20	10	20	20	
2011-PAROFRINTER 2011 DADKINC	20	20	20	90	20	20	
2011-PARKING	20	- 20	10	10	20	20	
2011-FEGSOL 2011 SCANALVZED	20	20	19	19	20	20	
2011-SOKOPAN	20	20	13	12	10	17	
2011-SOROBAN 2011 TIDVDOT	-20	17	9	14	16	15	
2011-TIDTBOT	20	11	0	14	10	10	
2011-TRANSPORT	20	4	0	20	19	9	
2011-VISITALL 2011 WOODWORKING	20	- 20	20	10	- 20	4	
1000 ACCEMPTV ADI	20	20	20	10	20	94	
1990-ASSEMBLI-ADL	150	150	150	140	150	24	
2000-ELEVATOR-SIMPLE	150	150	150	149	100	100	
2000-SCHEDULE-ADL	150	150	150	134	138	134	
2002-SATELLITE-ADL	20	20	20	20	20	20	
2004-AIRPORT-ADL	50	49	41	31	45	30	
2004-OPTICAL-TELEGRAPH-ADL	48	39	41	19	1	17	
2004-PHILOSOPHERS-ADL	48	48	48	23	14	14	
2006-TRUCKS-ADL	29	16	22	17	14	11	
2008-OPENSTACKS-ADL	30	18	15	30	30	30	
total	1646	1416	1304	1332	1414	1238	
weighted score	47	39.06	34.36	37.97	40.48	34.11	
confidence interval low		34.82	-7.86	-6.09	-3.33	-9.69	
confidence interval high		42.79	-1.98	4.14	6.36	-0.12	

Results

Figure 14: Number of instances solved by different planners

February 18, 2015

LifeWare Seminar

Applications (1 / 2)

- Disassemble a car engine (NOAH, Earl Sacerdoti 1974)
- Organize the military invasion of Iraq (SIPE, David Wilkins, 1980).
- Autonomy of a spatial probe around Jupiter (2000).
- Debug a xerox machine

Applications (2 / 2)

