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Abstract—An autonomous vehicle, towards the goal of being 

intelligent, must drive in several contexts along its way to 

destination (e.g., crowded urban streets, straight highways, 

roundabouts). However, the algorithms (e.g., for perception) 

running on the automated vehicle in one environment (e.g., in 

urban zones) are not the same as those running in another one 

(e.g., on highways). In this paper, we present an approach, based 

on a knowledge base, to dynamically generate the software 

architecture of an autonomous vehicle, i.e., make the autonomous 

vehicle adaptable and context-dependent. Our approach is less 

CPU power consuming than representing all possible software 

components inside a large architecture, and switching from one 

component to another as context changes. Attractive results in 

simulation are presented, proving the feasibility of the concept. 

Keywords—intelligent vehicle, autonomous driving, context 

adaptation. 

I. INTRODUCTION 

The dream of the Intelligent Transportation Systems 

community probably is to build a vehicle which could 

autonomously and safely drive in every environment 

encountered on the way to a given destination. For example, a 

target demonstration of such intelligent vehicle could be to 

safely drive from Place de l’Etoile roundabout in Paris at 

5PM, take the Avenue de la Grande Armée (urban 

environment), then turn around Porte Maillot roundabout, take 

the Périphérique Extérieur (highway), then take the A13 

(highway), then enter Versailles (urban environment) to reach 

Rue des Chantiers --- this path includes 2 urban environments, 

2 roundabouts and 2 highways. Closest demonstrations are the 

DARPA Urban Challenge won by the Junior car (2007) or 

international projects such as VIAV (international travel from 

Parma to Shanghai) by VisLab in 2010, among others.  

However, in an intelligent autonomous vehicle, the 

algorithms running to drive the automated vehicle in one 

environment are not the same as those running to drive it in 

others: these algorithms are context-dependent. This comes 

from the fact that an algorithm is usually based on 

assumptions, i.e., given specific inputs an algorithm will 

produce more or less performant outputs, depending on the 

un/satisfaction of these assumptions. For example, a 

perception algorithm for lane detection and tracking [13] may 

exhibit a lane recognition rate which will be high for straight 

roads, e.g., on highways, and low for curved roads, e.g., in 

mountains. Assumptions (performance/applicability zones) of 

an algorithm indeed appear as of crucial importance for 

intelligent vehicles autonomously driven by computer 

software. 

In this paper, we present an approach to make an 

autonomous vehicle adaptable to its environment/context. Our 

approach is based on a knowledge base to off line describe the 

algorithms (e.g., perception) running inside an automated 

vehicle, and to dynamically choose on line (i.e., while the 

automated vehicle is driving) which algorithms to use in the 

context at hand. A key point of our approach is to consider a 

software architecture as a graph where nodes are algorithms 

and vertices are data flows. 

Cognitive architectures, i.e., software architectures 

including both reaction and deliberation, have been studied for 

long in robotics and Artificial Intelligence, e.g., [1][5][6]. 

Model-driven engineering has also been used to generate 

software architectures of robotic systems, e.g. [12], considered 

as problem solving. But to our knowledge, this is the first time 

that such cognitive architecture is proposed for autonomous 

vehicles in the domain of Intelligent Transportation Systems. 

This paper is organized as follows: in section II, 

literature on cognitive architectures and model-based 

engineering is compared to our knowledge-based approach; In 

section III, existential software architectures of autonomous 

vehicles are presented, knowledge-based reasoning is recalled 

and applied to representation of assumptions of algorithms, in 

order to exhibit dependency on environment/context; in 

section IV, an implementation including an inference engine 

and a proprietary tool for activating software architectures is 

described, and a control algorithm for testing our 

implementation on actual data logs is presented; section V 

discusses our model regarding issues of safety, embedded 
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reasoning and response time. Finally, we sum up our 

contribution and propose extensions. 

II. RELATED WORK 

Many autonomous vehicles are designed for a unique 

context/environment, e.g., [2]. But autonomous driving of 

vehicles involves driving in every context encountered along 

the way to destination (see target scenario in section I), in 

order to reach adaptability. 

Cognitive architectures, i.e., software architecture including 

both reaction and deliberation, have been studied for long in 

robotics and Artificial Intelligence and are a debated topic. [7] 

proposes a two-layer software architecture for controlling 

autonomous robotic agents, based on a “cognitive”’ layer 

including time consuming components (e.g., action/task 

planning) and a “reactive” layer including fast reactive loops 

connected to the environment. Each layer is organized as a 

blackboard architecture [6]: A data structure (the 

“blackboard”) is visible/accessible by all knowledge sources 

(internal agents), and knowledge sources react to changes on 

this structure by bringing knowledge to it, with a control plan 

for choosing which knowledge source actually accesses it in 

case of conflict. This 2-level architecture has been 

successfully used to control an indoor mobile robot, acting as 

a fac totum in offices. A work close in spirit is [10], which 

proposes a fully parallel software architecture based on Device 

Profile Web Services to encapsulate a task/action planner as a 

web service and generate linear scenarios (i.e., a sequence of 

high-level tasks), controlling a mobile robot with an arm in 

indoor static environments 

 But both work, despite including a task/action planner, 

which is potentially time consuming, are based on the 

response time of the deliberative components on actually 

encountered cases, which is paradoxically high (fast 

action/task planning) when compared to the (low) motion 

speed of these mobile robots. Unfortunately, this assumption 

does not hold for an autonomous vehicle driving at speed 

130km/h on highways. In addition, these mobile robots run in 

static environments, which is not the case for an autonomous 

vehicle driving in urban zones (a dynamic environment). 

In contrast, [1] proposes a 3-layer cognitive architecture, 

composed of a “deliberation” layer (including task/action 

planning and procedural reasoning), a “functional” layer 

(choosing which behavior of the agent to activate) and a 

“control” layer (executing the prescribed behavior). Another 

three layer architecture is proposed in [5], which is composed 

of a “deliberator” (containing time-consuming search-based 

algorithms such as task planning), a “controller” (containing 

fast feedback control loops) and a “sequencer” (fast selection 

of the behavior to activate and conditional reaction to 

unexpected output). As opposed to these bodies of work, if the 

whole software architecture of ITS may probably fall into a 

behavior of the previous “controller”s,, the proposed 

knowledge-based reasoning approach is much faster than time 

consuming algorithms such as task planning, therefore it could 

probably be contained in the previous “functional” / 

“Controller” layers (knowledge based generation of 

“behaviors”) under this view --- see also 2nd point of section 

V. 

[12] proposes a model-driven engineering approach 

defining a language for expressing functional and non-

functional properties of a system and expressing software 

architecture as a solution resulting from problem solving. But 

in these authors’ view, a software architecture is considered as 

a solution to a problem, and as such might be subject to time 

consuming computation, whereas in our approach algorithms 

encapsulated in components result from an expertise, which is 

less time consuming than solving a combinatorial problem 

(except for small sized problems). In addition, our approach is 

dedicated to autonomous vehicles, in which expertise exists, 

whereas these authors’ approach is more generally dedicated 

to robotic systems. 

III. MODEL 

A. Software architectures 

The algorithms inside an autonomous vehicle are usually 

organized in a software architecture, i.e., a man-designed 

directed acyclic graph of nodes (algorithms) and vertices (data 

flow) --- as depicted in Fig. 1 Proprietary tools for graphically 

representing/designing and running such architectures, i.e., 

synchronizing data streams, include RTMaps (Real Time 

Multi-Sensor Advanced Prototyping Software [11]) and ROS 

(Robotic Operating System ).  These tools can be used at 

design time for graphically designing in a user-friendly way 

such graphs (encapsulating algorithms inside 

components/nodes and stating data streams as directed 

vertices between a component output and another component 

input), or at run time for activating the executable code of the 

algorithms (nodes) in threads, making them exchange data 

through ports (vertices), and actually driving an intelligent 

vehicle with its sensors and actuators through the SLAM / 

perception / data fusion / path planning / control cycle, 

common in the ITS domain. 

Unfortunately, such software architecture can be designed 

and run with the above 2 tools but cannot be changed once 

launched in an autonomous vehicle. The only exception to this 

is the “Condition” component of the RTMaps proprietary tool 

[11], which blocks an output port if a condition is not met. 

That component can be used to feed/starve parts of a software 

architecture but all parts would still run, consuming CPU 

power / resources and leading to large software architectures 

(representing all cases) with a small portion of it being 

active/fed only. On the opposite, runtime conditions of the 

autonomous vehicle require to dedicate the whole CPU to 

active components of reasonably large software architecture, 

to ensure data flow speed from the autonomous vehicle’s 

sensors to its actuators --- a data delay of e.g. 1s in the output 

(e.g., the socket sender component at the middle right of Fig. 

1) could lead to unsafe manoeuvers of the autonomous vehicle 

(e.g., on a highway with an autonomous vehicle driving at 

130km/h, a 1s delay represents 36.11m). 

 



 
Fig. 1. Visualization of a generic (simplified) software architecture for 
driving a Zoé autonomous vehicle  (vehicle augmented with sensors, effectors 

and computing power from a product of the Renault company). The lower left 

branch represents camera acquisition, the middle left one represents a LIDAR 
sensor acquisition the upper left branch represents a GPS sensor, the middle 

component represents data fusion, the 2 composenents on the top and middle 

right represent path planning and control components. The resulting command 
is sent to the vehicule via a socket with the middle far right component. 

B. Existential software architectures 

Towards this goal, we propose existential software 

architecture, i.e., software architectures which exist due to 

context / environment and which can dynamically change as 

the autonomous vehicle’s context changes and evolves. For all 

context/environment, there exists a software architecture such 

that this software architecture is adapted to this environment --

- since most drivers can drive in any environmental 

conditions. For example, the target path described in the 

section I requires 3 software architectures due to the presence 

of 3 distinct environments / contexts (roundabout, urban zone, 

highway). 

Making intelligent vehicle’s software architectures 

existential, adaptable and context dependent can be performed 

based on the following key point:  these tools represent a 

specific software architecture in a computer language (an 

XML file and associated libraries of component’s executable 

in the case of  RTMaps [11]), which as such can be the output 

of another software mechanism. This is the feature which is 

used in this paper, for context dependent dynamic generation 

of software architecture of an intelligent vehicle. A software 

architecture itself is considered as a programming object, 

which is once generated by a designer but which can later be 

dynamically re-generated not by a designer but by a computer 

(another piece of software). 

C. Knowledge base 

For performing this dynamic context-dependent online 

generation of software architecture for an autonomous vehicle, 

we base our approach on an inference engine and a knowledge 

base, the result of this computation being a file representing 

the current software architecture of the autonomous vehicle in 

the syntax of the above tools. 

A knowledge base is a notion coming from the domain of 

Artificial Intelligence: It is composed of a fact base and a rule 

base, representing objects of discourse (what is known by the 

system at a given time) and expert inference rules (how 

knowledge can be inferred upon these objects). The algorithm 

activating a knowledge base (the inference engine) may use 

forward (i.e., data driven), backward (i.e., goal driven) or 

mixed chaining modes. 

In our approach, algorithms, e.g., perception ones like lane 

detection [13], are represented as facts of such a knowledge 

base: each algorithm of the knowledge base is represented as 

an object and therefore can be reasoned upon. The 

environment of the intelligent vehicle (road environment, 

weather conditions) is also represented as facts in this 

knowledge base, i.e., objects of classes different than the one 

of the algorithms. Objects can be dynamically created 

(inferred) in a knowledge base, enabling to represent different 

environments of the intelligent vehicle as it follows its path to 

its destination (e.g., as in the target scenario of section I) and 

making the inference engine react according to its inference 

rules. 

As opposed to the fact base, the rule base is composed of 

expert rules encoding expert’s knowledge on the 

assumptions/validity/applicability-zone of each algorithm 

encoded as fact in the fact base. These inference rules are not 

supposed to change at run time, except under expert approval. 

The expertise and knowledge encoded into these rules has 

been extracted by interviews (with members of our team, 

designers of algorithms, e.g. [13]), since this is a common 

practice of knowledge engineers for knowledge acquisition 

and formalization. 

IV. IMPLEMENTATION AND RESULTS 

The model of section II has been implemented using 

the knowledge-based system C Language Integrated 

Production System (CLIPS [3]). CLIPS is a forward chaining 

inference engine with an object-oriented system (i.e., classes 

and instances), written in the C programming language. 

CLIPS is connected via XML file, representing a specific 

software architecture, and libraries/packages, encoding 

executable code of algorithms, to the proprietary tool RTMaps 

[11] for activation of the architecture’s algorithms and data 

flow among them, and finally actual control (from sensors to 

actuators)  of an autonomous vehicle. 

A. Inference 

Applicability zones/assumptions of algorithms are encoded 

as inference rules over a fact base representing algorithms and 

environmental conditions (i.e., context). An actual inference 

rule, such as the one for generating the software architecture 

of Fig. 3, is 1-page long, hence it cannot be shown here due to 

paper space limitation. Therefore a generic inference rule for 

generating software architectures as graphs of components and 

connections (aka nodes and vertices) is presented in Fig. 2 

The left-hand side of the generic inference rule of Fig. 2, 

starting with the CLIPS keyword “defrule” (line 1), is 

separated from its right-hand side, ending with a closing 

parenthesis (line 19), by the CLIPS keyword “=>” (line 10).  



The left hand side is composed of one environment match 

on <feature>s and their <status> value (line 2), then pairs 

algorithm/model matches (resp., lines 3 and 4-5) and finally a 

finite-state automaton object fsa (line 9) matching the inference 

state and giving control in the right-hand side to the “printing” 

state (change of the “status” slot of the  object “fsa” in line 18). 

This pair algorithm/model is repeated as needed by the 

components/algorithms of the software architecture to be 

generated --- line 6 for a second algorithm, lines 7-8 for a 

second model. The name <name1> of the first algorithm (line 

3) is the name of first component generated in the right-hand 

side (line 12). A CLIPS variable ?m1 in the first algorithm 

(line 3) is used to link the model required by this algorithm to 

the name of its matched model (line 4) --- similarly for the 

other pairs algorithm/model in line 6 (variable ?m2) and lines 

7-8. 

Models preexist in the fact base to store the values of the 

slots “properties”, “types” and “values” required by the data 

flow design/execution tool RTMaps [11]. 

Vertices of the graph, i.e., connections between 

components, are asserted in the right hand side (line 15-17) by 

linking an output port <oname> (line 16) of an output 

component <name1> (line 15) to input port <iname> (line 17) 

of input component <name2> (line 16). The pattern on 

components (lines 12-14) is repeated as needed for all 

components of the software architecture to be generated (e.g., 

8 components for Fig. 3) --- similarly for connections (line 15-

17). 

Finally, executable code of each component/algorithm is 

encapsulated in a package (line 11), and repeated as needed for 

all components of the software architecture to generate. 

 

1 (defrule generate-generic-diagram 

2   (environment [(<feature> <status>)]+) 
3   (algorithm (name <name1>) (model ?m1)) 
4   (model (nom ?m1) (properties $?p1s) (types $?t1s) 
5     (values $?v1s)) 
6   [(algorithm (name <name2>) (model ?m2)) 
7    (model (name ?m2) (properties $?p2s) (types $?t2s) 
8      (values $?v2s))]+ 
9   ?s <- (fsa (status inference)) 
10  => 

11  [(assert (required-package (name <pck-filename>)))]*  

12  [(assert (component  (name <name1>) (modele ?m1)  
13      (output-ports <oname>+) (properties ?p1s) (types ?t1s)  
14      (values ?v1s)))]+ 
15  [(assert (connection (component-output <name1>) 
16      (output-port <oname>) (input-component <name2>) 
17      (start-port <sname>)))]+ 

18  (modify ?s (status printing)) 
19  ) 

Fig. 2. Pattern of a CLIPS [1] inference rule to generate a software 

architecture as a graph composed of components and connexions. 

As opposed to Fig. 2, software architectures can also 

be generated piece by piece: a right-hand side of an inference 

rule (smaller than the one summed up in Fig. 2) asserts one 

component only (or a group of components and internal 

connections), and another rule asserts another component in 

the same architecture under other environmental conditions. 

Connections among single/group-of components generated by 

different rules are asserted inside the most specific of such 

inference rules. 

B. Results 

If the core knowledge and inference on software 

architecture generation is described in subsection A, we now 

describe its test in simulation (replay). 

Data logs (i.e., the output ports of some components of an 

existing software architecture have been recorded) of run of an 

actual prototype of autonomous vehicle Zoé have been 

gathered during actual experiments made in Bordeaux, France 

--- it contains 25575 points. The algorithm for replay is the 

following: 

1. A position in Lambert93 coordinates [8] is extracted 

from each successive point of the data log. If the 

current position is too close (i.e., distance less than a 

threshold) from the previous one, ignore the current 

point and loop on the next one. 

2. The closest point to the one of step 1 is extracted 

from a topological map of Bordeaux, and its features 

are extracted (e.g., traffic signs, traffic lights, 

roundabouts, road curvature, crosswalks, 

intersections) and entered into the CLIPS fact base as 

symbolic facts of the knowledge base. If the point in 

the topological map is the same as the previous one, 

ignore it (the autonomous vehicle has not moved 

enough) and loop to step 1.  

3. Inference and generation of a candidate software 

architecture occurs (see subsection A). If the inferred 

software architecture is the same as the previous one 

(symbolic test), the context is considered not to have 

changed and the candidate software architecture is 

ignored (stability of the software architecture); Loop 

on the next point in step 1. If no inference rule fires 

(no software architecture is inferred due to lack of 

knowledge), the latest software architecture inferred 

at previous loops, even unadapted, is kept for safety 

reasons. 

4. If the candidate software architecture is considered as 

new (i.e., the context has changed based on perceived 

features), generate its XML file (see visualization in 

e.g.  Fig. 3) and run RTMaps in execution mode. 

5. Loop on step 1 until all points of the data log are 

scanned. 

 

The above replay algorithm is implemented as a finite-state 

automaton using inference rules --- see lines 9 and 18 in Fig. 2 

on state inference (corresponding to step 4 in the above 

algorithm) of the automaton. 

As a result, 21 software architectures, including the one in 

Fig. 3, are successively inferred and activated during the 

replay of the above data log. 

 

 



*** faire la manip de Guillaume sur le gros schema 

RTMaps avec interactions et les 2 Petits. Mesure du temps de 

réponse. 

V. DISCUSSION 

 Safety: Safety is a fundamental issue in the domain 

of Intelligent Transportation Systems. Despite 

perception’s inherent imperfection and potential bugs 

in embedded source code (eventually due to 

potentially poor software engineering practices), 

safety has to be ensured for autonomous vehicles to 

be accepted by public authorities. To this regard, 

generating “small” software architectures, as in our 

approach, leads to easier architecture debugging than 

with “large” ones. However in our case, safety 

concerns entail (i) careful analysis and review of 

algorithms’ assumptions to elucidate applicability 

zones in their input data (this raises difficult 

questions such as: When does a deep learning 

perception algorithm fail to recognize e.g. a 

pedestrian, since machine learning algorithms are 

trained on a finite (even large) data set?); (ii) careful 

review of the knowledge base on expert inference 

rules, to ensure that no lack of knowledge 

(potentially leading to further expert’s interviews and 

future research directions) can be proved off line --- 

see the last test of step 3 of the algorithm of section 

IV.B., aiming at always having an active software 

architecture on the autonomous vehicle The 

knowledge represented in knowledge bases on 

computers cannot be larger than the expert’s 

knowledge it comes from --- one exception is to 

consider components’ parameters values manually 

determined as a training set and to use supervised 

learning to estimate unknown parameters value. 

 Embedded reasoning: our model, as a reasoning 

paradigm embedded on an autonomous vehicle, has 

to be executed on a computer inside the vehicle, e.g., 

as a software meta-architecture. But since it is based 

on perception of context/environment for further 

inferences, it may be integrated as a component in a 

recursive software architecture that it generates itself, 

i.e., inference based on context/environment 

generates a software architecture which includes an 

inference RTMaps component, located downward 

perception, which in turn will generate another 

software architecture including the same inference 

component, which in turn etc --- a concept similar to 

continuation in functional programming languages 

(e.g., in the Lisp dialect SCHEME). Or an alternative 

implementation of our approach could be to 

encapsulate the CLIPS inference engine and its 

knowledge base in an RTMaps  component, which is 

connected to the regular components (e.g., SLAM, 

perception, data fusion, path planning and control), as 

above, but activates/deactivates possible variant 

algorithms of each kind with a boolean variable to a 

specific non-functional input port. This way, a 

software architecture would be tailorable and tailored 

at run time by a reasoning component inside itself ---

- instead of being fully re-generated each time the 

context/environment changes, as in our approach. 

 Response time: A reasoning algorithm, as an 

inference engine activating a knowledge base such as 

in our approach, cannot compete in computational 

speed and response time with computationally fast 

perception algorithms, such as [13]. Despite speedups 

on pattern matching in inference engines, e.g., RETE 

algorithm  [4] and its variants, the response time of a 

knowledge-based system with an inference engine 

(including CLIPS’ instance) is indeed much slower 

than fast perception algorithms, leading to fast 

commands to the autonomous vehicle’s actuators --- 

especially for large knowledge bases. This entails 

that (i) a software architecture, generated for a 

context/environment, is always late even if this 

context/environment is perceived with a small 

response time; adaptation to context cannot be as fast 

as perception, it occurs indeed later than perception 

in the ITS cycle. (ii) A software architecture aiming 

at embedding reasoning, such as the one envisioned 

in the previous paragraph, must incorporate 

algorithms of various response times, the slowest 

ones configuring the fastest ones --- a knowledge 

base for configuring parameters’ value of 

algorithms/components. 

 Switching vs. evolving: in our approach, a software 

architecture, once generated, replaces the previous 

one because of a new perceived context/environment. 

But, to take an analogy, when a human driver is 

driving on a highway (initial context), as soon as he 

is aware of the proximity of an exit to take (e.g., via a 

traffic sign or a GPS), his perception changes, so as 

to pay more attention to the right side of the road in 

his field of view (change of focus of attention), and 

have no risk to miss the exit, before taking the exit 

when it arrives (target context). In other words, once 

a new context/environment is known, even before it 

is perceived, the software architecture should not 

discretely switch to the new one, but continuously 

evolve from the current software architecture towards 

a new one. 

VI. CONCLUSION 

The algorithms (e.g., for perception) activated in an 

autonomous vehicle in one context (e.g., highway) are not the 

same as those activated in another one (e.g., urban). 

Algorithms exhibit applicability zones in their input data, and 

own assumptions. To make an autonomous vehicle adaptable 

and context dependent, and thus capable of safely driving in 

every context/environment encountered towards a destination, 

we proposed existential software architectures and described a 

knowledge base of algorithms (e.g., for perception), to infer at 

run time the software architecture of an autonomous vehicle, 



considered as a directed graph of nodes (i.e., algorithms) and 

vertices (i.e., data flow). The dynamic knowledge base has 

been tested in simulation for replay of data logs of an actual 

prototype Zoé of autonomous vehicle, which proves the 

feasibility of the concept. 

Future work includes formalizing larger knowledge 

to infer more algorithms/components, and merging real time 

performances of successive software architectures using fuzzy 

logic, as in [9]. 

ACKNOWLEDGMENT 

The authors thank the members of the VEH08 group for 
numerous fruitful discussions. 

REFERENCES 

 
[1] R. Alami, S. Fleury, M. Ghallab, F. Ingrand. An architecture for 

autonomy. International Journal of Robotics Research. Vol. 17, no. 4, 
pp. 315-337, 1998. 

[2] Web site of NAVYA projec ARMA. http://navya.tech/?lang=en  

[3] CLIPS project web site http://clipsrules.sourceforge.net/ 

[4] C. Forgy. On the efficient implentation of production systems  PhD 
thesis. C.S. Dept., CMU, 1979. 

[5] E. Gat. On three layer architectures. A.I. and Mobile  Robotis, D. 
Kortenkamp. et al. Ed. , pages 195-210, 1998. 

[6] B. Hayes-Roth. A blackboard architecture for control. Artificial 
Intelligence, vol. 26, no. 3, pages 251-321, 1985. 

[7] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, M. Balabanovic. A 
Domain-Specific Software Architecture for Adapative Intelligent 
Systems. IEEE Trans. on Software Engineering, 4(21):288-301, April 
1995. 

[8] A. Harmel. Le nouveau système réglementaire Lambert93 (in French). 
GPS. http://www.geomag.fr/sites/default/files/68_91.pdf  

[9] V. Milanes, J. Perez-Rastelli, E. Onieva, C. Gonzalez. Controller for  
urban intersection based on wireless communication and fuzzy logic. 
IEEE Trans. on Intelligent Transportation Systems, 2010. 

[10] P. Morignot, M. Soury, P. Hède, C. Leroux, H. Vorobieva. Generating 
scenarios for a mobile robot with an arm. Case study: Assistance for 
handicapped persones. ICARCV, Singapore, Dec. 2010. 

[11] Web site of the proprietary tool Real-Time Multi-Sensor Advanced 
Prototyping System (RTMaps) 
https://intempora.com/products/rtmaps.html  

[12] A. K. Ramaswamy, B. Monsuez, A. Tapus. Solution space modellig for 
robotic systems. Journal for Software Engineering Robotics (JOSER). 
5(1), pp. 89-96, 2014. 

[13] M. Revilloud, D. Gruyer, M.-C. Rahal. A new multi agent approach for 
lane detection and tracking. ICRA, pages 3147-3153, 2016 

[14] Robotic Operating System (ROS) web site http://www.ros.org/  

 

 

 
Fig. 3. Visualization of the software architecture for obstacle detection with lidar and radar sensor. 5 inference rules are dedicated to graphical placement of 

components on RTMaps interface, for debug purposes. 
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