
A Knowledge Base to Dynamically Generate Context-

Dependent Software Architectures for Autonomous

Vehicles

Philippe Morignot, Guillaume Bresson, Mohamed-

Chérif Rahal

Institute VEDECOM, 77, rue des chantiers

78000 Versailles, France

{Philippe.Morignot Guillaume.Bresson

Mohamed.Rahal}@vedecom.fr

Sébastien Glaser

IFSTTAR & Institute VEDECOM, 77, rue des chantiers

78000 Versailles, France

Sebastien.Glaser@vedecom.fr

Abstract—An autonomous vehicle, towards the goal of being

intelligent, must drive in several contexts along its way to

destination (e.g., crowded urban streets, straight highways,

roundabouts). However, the algorithms (e.g., for perception)

running on the automated vehicle in one environment (e.g., in

urban zones) are not the same as those running in another one

(e.g., on highways). In this paper, we present an approach, based

on a knowledge base, to dynamically generate the software

architecture of an autonomous vehicle, i.e., make the autonomous

vehicle adaptable and context-dependent. Our approach is less

CPU power consuming than representing all possible software

components inside a large architecture, and switching from one

component to another as context changes. Attractive results in

simulation are presented, proving the feasibility of the concept.

Keywords—intelligent vehicle, autonomous driving, context

adaptation.

I. INTRODUCTION

The dream of the Intelligent Transportation Systems

community probably is to build a vehicle which could

autonomously and safely drive in every environment

encountered on the way to a given destination. For example, a

target demonstration of such intelligent vehicle could be to

safely drive from Place de l’Etoile roundabout in Paris at

5PM, take the Avenue de la Grande Armée (urban

environment), then turn around Porte Maillot roundabout, take

the Périphérique Extérieur (highway), then take the A13

(highway), then enter Versailles (urban environment) to reach

Rue des Chantiers --- this path includes 2 urban environments,

2 roundabouts and 2 highways. Closest demonstrations are the

DARPA Urban Challenge won by the Junior car (2007) or

international projects such as VIAV (international travel from

Parma to Shanghai) by VisLab in 2010, among others.

However, in an intelligent autonomous vehicle, the

algorithms running to drive the automated vehicle in one

environment are not the same as those running to drive it in

others: these algorithms are context-dependent. This comes

from the fact that an algorithm is usually based on

assumptions, i.e., given specific inputs an algorithm will

produce more or less performant outputs, depending on the

un/satisfaction of these assumptions. For example, a

perception algorithm for lane detection and tracking [13] may

exhibit a lane recognition rate which will be high for straight

roads, e.g., on highways, and low for curved roads, e.g., in

mountains. Assumptions (performance/applicability zones) of

an algorithm indeed appear as of crucial importance for

intelligent vehicles autonomously driven by computer

software.

In this paper, we present an approach to make an

autonomous vehicle adaptable to its environment/context. Our

approach is based on a knowledge base to off line describe the

algorithms (e.g., perception) running inside an automated

vehicle, and to dynamically choose on line (i.e., while the

automated vehicle is driving) which algorithms to use in the

context at hand. A key point of our approach is to consider a

software architecture as a graph where nodes are algorithms

and vertices are data flows.

Cognitive architectures, i.e., software architectures

including both reaction and deliberation, have been studied for

long in robotics and Artificial Intelligence, e.g., [1][5][6].

Model-driven engineering has also been used to generate

software architectures of robotic systems, e.g. [12], considered

as problem solving. But to our knowledge, this is the first time

that such cognitive architecture is proposed for autonomous

vehicles in the domain of Intelligent Transportation Systems.

This paper is organized as follows: in section II,

literature on cognitive architectures and model-based

engineering is compared to our knowledge-based approach; In

section III, existential software architectures of autonomous

vehicles are presented, knowledge-based reasoning is recalled

and applied to representation of assumptions of algorithms, in

order to exhibit dependency on environment/context; in

section IV, an implementation including an inference engine

and a proprietary tool for activating software architectures is

described, and a control algorithm for testing our

implementation on actual data logs is presented; section V

discusses our model regarding issues of safety, embedded

mailto:Mohamed.Rahal%7D@vedecom.fr
mailto:Sebastien.Glaser@vedecom.fr

reasoning and response time. Finally, we sum up our

contribution and propose extensions.

II. RELATED WORK

Many autonomous vehicles are designed for a unique

context/environment, e.g., [2]. But autonomous driving of

vehicles involves driving in every context encountered along

the way to destination (see target scenario in section I), in

order to reach adaptability.

Cognitive architectures, i.e., software architecture including

both reaction and deliberation, have been studied for long in

robotics and Artificial Intelligence and are a debated topic. [7]

proposes a two-layer software architecture for controlling

autonomous robotic agents, based on a “cognitive”’ layer

including time consuming components (e.g., action/task

planning) and a “reactive” layer including fast reactive loops

connected to the environment. Each layer is organized as a

blackboard architecture [6]: A data structure (the

“blackboard”) is visible/accessible by all knowledge sources

(internal agents), and knowledge sources react to changes on

this structure by bringing knowledge to it, with a control plan

for choosing which knowledge source actually accesses it in

case of conflict. This 2-level architecture has been

successfully used to control an indoor mobile robot, acting as

a fac totum in offices. A work close in spirit is [10], which

proposes a fully parallel software architecture based on Device

Profile Web Services to encapsulate a task/action planner as a

web service and generate linear scenarios (i.e., a sequence of

high-level tasks), controlling a mobile robot with an arm in

indoor static environments

 But both work, despite including a task/action planner,

which is potentially time consuming, are based on the

response time of the deliberative components on actually

encountered cases, which is paradoxically high (fast

action/task planning) when compared to the (low) motion

speed of these mobile robots. Unfortunately, this assumption

does not hold for an autonomous vehicle driving at speed

130km/h on highways. In addition, these mobile robots run in

static environments, which is not the case for an autonomous

vehicle driving in urban zones (a dynamic environment).

In contrast, [1] proposes a 3-layer cognitive architecture,

composed of a “deliberation” layer (including task/action

planning and procedural reasoning), a “functional” layer

(choosing which behavior of the agent to activate) and a

“control” layer (executing the prescribed behavior). Another

three layer architecture is proposed in [5], which is composed

of a “deliberator” (containing time-consuming search-based

algorithms such as task planning), a “controller” (containing

fast feedback control loops) and a “sequencer” (fast selection

of the behavior to activate and conditional reaction to

unexpected output). As opposed to these bodies of work, if the

whole software architecture of ITS may probably fall into a

behavior of the previous “controller”s,, the proposed

knowledge-based reasoning approach is much faster than time

consuming algorithms such as task planning, therefore it could

probably be contained in the previous “functional” /

“Controller” layers (knowledge based generation of

“behaviors”) under this view --- see also 2nd point of section

V.

[12] proposes a model-driven engineering approach

defining a language for expressing functional and non-

functional properties of a system and expressing software

architecture as a solution resulting from problem solving. But

in these authors’ view, a software architecture is considered as

a solution to a problem, and as such might be subject to time

consuming computation, whereas in our approach algorithms

encapsulated in components result from an expertise, which is

less time consuming than solving a combinatorial problem

(except for small sized problems). In addition, our approach is

dedicated to autonomous vehicles, in which expertise exists,

whereas these authors’ approach is more generally dedicated

to robotic systems.

III. MODEL

A. Software architectures

The algorithms inside an autonomous vehicle are usually

organized in a software architecture, i.e., a man-designed

directed acyclic graph of nodes (algorithms) and vertices (data

flow) --- as depicted in Fig. 1 Proprietary tools for graphically

representing/designing and running such architectures, i.e.,

synchronizing data streams, include RTMaps (Real Time

Multi-Sensor Advanced Prototyping Software [11]) and ROS

(Robotic Operating System). These tools can be used at

design time for graphically designing in a user-friendly way

such graphs (encapsulating algorithms inside

components/nodes and stating data streams as directed

vertices between a component output and another component

input), or at run time for activating the executable code of the

algorithms (nodes) in threads, making them exchange data

through ports (vertices), and actually driving an intelligent

vehicle with its sensors and actuators through the SLAM /

perception / data fusion / path planning / control cycle,

common in the ITS domain.

Unfortunately, such software architecture can be designed

and run with the above 2 tools but cannot be changed once

launched in an autonomous vehicle. The only exception to this

is the “Condition” component of the RTMaps proprietary tool

[11], which blocks an output port if a condition is not met.

That component can be used to feed/starve parts of a software

architecture but all parts would still run, consuming CPU

power / resources and leading to large software architectures

(representing all cases) with a small portion of it being

active/fed only. On the opposite, runtime conditions of the

autonomous vehicle require to dedicate the whole CPU to

active components of reasonably large software architecture,

to ensure data flow speed from the autonomous vehicle’s

sensors to its actuators --- a data delay of e.g. 1s in the output

(e.g., the socket sender component at the middle right of Fig.

1) could lead to unsafe manoeuvers of the autonomous vehicle

(e.g., on a highway with an autonomous vehicle driving at

130km/h, a 1s delay represents 36.11m).

Fig. 1. Visualization of a generic (simplified) software architecture for
driving a Zoé autonomous vehicle (vehicle augmented with sensors, effectors

and computing power from a product of the Renault company). The lower left

branch represents camera acquisition, the middle left one represents a LIDAR
sensor acquisition the upper left branch represents a GPS sensor, the middle

component represents data fusion, the 2 composenents on the top and middle

right represent path planning and control components. The resulting command
is sent to the vehicule via a socket with the middle far right component.

B. Existential software architectures

Towards this goal, we propose existential software

architecture, i.e., software architectures which exist due to

context / environment and which can dynamically change as

the autonomous vehicle’s context changes and evolves. For all

context/environment, there exists a software architecture such

that this software architecture is adapted to this environment --

- since most drivers can drive in any environmental

conditions. For example, the target path described in the

section I requires 3 software architectures due to the presence

of 3 distinct environments / contexts (roundabout, urban zone,

highway).

Making intelligent vehicle’s software architectures

existential, adaptable and context dependent can be performed

based on the following key point: these tools represent a

specific software architecture in a computer language (an

XML file and associated libraries of component’s executable

in the case of RTMaps [11]), which as such can be the output

of another software mechanism. This is the feature which is

used in this paper, for context dependent dynamic generation

of software architecture of an intelligent vehicle. A software

architecture itself is considered as a programming object,

which is once generated by a designer but which can later be

dynamically re-generated not by a designer but by a computer

(another piece of software).

C. Knowledge base

For performing this dynamic context-dependent online

generation of software architecture for an autonomous vehicle,

we base our approach on an inference engine and a knowledge

base, the result of this computation being a file representing

the current software architecture of the autonomous vehicle in

the syntax of the above tools.

A knowledge base is a notion coming from the domain of

Artificial Intelligence: It is composed of a fact base and a rule

base, representing objects of discourse (what is known by the

system at a given time) and expert inference rules (how

knowledge can be inferred upon these objects). The algorithm

activating a knowledge base (the inference engine) may use

forward (i.e., data driven), backward (i.e., goal driven) or

mixed chaining modes.

In our approach, algorithms, e.g., perception ones like lane

detection [13], are represented as facts of such a knowledge

base: each algorithm of the knowledge base is represented as

an object and therefore can be reasoned upon. The

environment of the intelligent vehicle (road environment,

weather conditions) is also represented as facts in this

knowledge base, i.e., objects of classes different than the one

of the algorithms. Objects can be dynamically created

(inferred) in a knowledge base, enabling to represent different

environments of the intelligent vehicle as it follows its path to

its destination (e.g., as in the target scenario of section I) and

making the inference engine react according to its inference

rules.

As opposed to the fact base, the rule base is composed of

expert rules encoding expert’s knowledge on the

assumptions/validity/applicability-zone of each algorithm

encoded as fact in the fact base. These inference rules are not

supposed to change at run time, except under expert approval.

The expertise and knowledge encoded into these rules has

been extracted by interviews (with members of our team,

designers of algorithms, e.g. [13]), since this is a common

practice of knowledge engineers for knowledge acquisition

and formalization.

IV. IMPLEMENTATION AND RESULTS

The model of section II has been implemented using

the knowledge-based system C Language Integrated

Production System (CLIPS [3]). CLIPS is a forward chaining

inference engine with an object-oriented system (i.e., classes

and instances), written in the C programming language.

CLIPS is connected via XML file, representing a specific

software architecture, and libraries/packages, encoding

executable code of algorithms, to the proprietary tool RTMaps

[11] for activation of the architecture’s algorithms and data

flow among them, and finally actual control (from sensors to

actuators) of an autonomous vehicle.

A. Inference

Applicability zones/assumptions of algorithms are encoded

as inference rules over a fact base representing algorithms and

environmental conditions (i.e., context). An actual inference

rule, such as the one for generating the software architecture

of Fig. 3, is 1-page long, hence it cannot be shown here due to

paper space limitation. Therefore a generic inference rule for

generating software architectures as graphs of components and

connections (aka nodes and vertices) is presented in Fig. 2

The left-hand side of the generic inference rule of Fig. 2,

starting with the CLIPS keyword “defrule” (line 1), is

separated from its right-hand side, ending with a closing

parenthesis (line 19), by the CLIPS keyword “=>” (line 10).

The left hand side is composed of one environment match

on <feature>s and their <status> value (line 2), then pairs

algorithm/model matches (resp., lines 3 and 4-5) and finally a

finite-state automaton object fsa (line 9) matching the inference

state and giving control in the right-hand side to the “printing”

state (change of the “status” slot of the object “fsa” in line 18).

This pair algorithm/model is repeated as needed by the

components/algorithms of the software architecture to be

generated --- line 6 for a second algorithm, lines 7-8 for a

second model. The name <name1> of the first algorithm (line

3) is the name of first component generated in the right-hand

side (line 12). A CLIPS variable ?m1 in the first algorithm

(line 3) is used to link the model required by this algorithm to

the name of its matched model (line 4) --- similarly for the

other pairs algorithm/model in line 6 (variable ?m2) and lines

7-8.

Models preexist in the fact base to store the values of the

slots “properties”, “types” and “values” required by the data

flow design/execution tool RTMaps [11].

Vertices of the graph, i.e., connections between

components, are asserted in the right hand side (line 15-17) by

linking an output port <oname> (line 16) of an output

component <name1> (line 15) to input port <iname> (line 17)

of input component <name2> (line 16). The pattern on

components (lines 12-14) is repeated as needed for all

components of the software architecture to be generated (e.g.,

8 components for Fig. 3) --- similarly for connections (line 15-

17).

Finally, executable code of each component/algorithm is

encapsulated in a package (line 11), and repeated as needed for

all components of the software architecture to generate.

1 (defrule generate-generic-diagram

2 (environment [(<feature> <status>)]+)
3 (algorithm (name <name1>) (model ?m1))
4 (model (nom ?m1) (properties $?p1s) (types $?t1s)
5 (values $?v1s))
6 [(algorithm (name <name2>) (model ?m2))
7 (model (name ?m2) (properties $?p2s) (types $?t2s)
8 (values $?v2s))]+
9 ?s <- (fsa (status inference))
10 =>

11 [(assert (required-package (name <pck-filename>)))]*

12 [(assert (component (name <name1>) (modele ?m1)
13 (output-ports <oname>+) (properties ?p1s) (types ?t1s)
14 (values ?v1s)))]+
15 [(assert (connection (component-output <name1>)
16 (output-port <oname>) (input-component <name2>)
17 (start-port <sname>)))]+

18 (modify ?s (status printing))
19)

Fig. 2. Pattern of a CLIPS [1] inference rule to generate a software

architecture as a graph composed of components and connexions.

As opposed to Fig. 2, software architectures can also

be generated piece by piece: a right-hand side of an inference

rule (smaller than the one summed up in Fig. 2) asserts one

component only (or a group of components and internal

connections), and another rule asserts another component in

the same architecture under other environmental conditions.

Connections among single/group-of components generated by

different rules are asserted inside the most specific of such

inference rules.

B. Results

If the core knowledge and inference on software

architecture generation is described in subsection A, we now

describe its test in simulation (replay).

Data logs (i.e., the output ports of some components of an

existing software architecture have been recorded) of run of an

actual prototype of autonomous vehicle Zoé have been

gathered during actual experiments made in Bordeaux, France

--- it contains 25575 points. The algorithm for replay is the

following:

1. A position in Lambert93 coordinates [8] is extracted

from each successive point of the data log. If the

current position is too close (i.e., distance less than a

threshold) from the previous one, ignore the current

point and loop on the next one.

2. The closest point to the one of step 1 is extracted

from a topological map of Bordeaux, and its features

are extracted (e.g., traffic signs, traffic lights,

roundabouts, road curvature, crosswalks,

intersections) and entered into the CLIPS fact base as

symbolic facts of the knowledge base. If the point in

the topological map is the same as the previous one,

ignore it (the autonomous vehicle has not moved

enough) and loop to step 1.

3. Inference and generation of a candidate software

architecture occurs (see subsection A). If the inferred

software architecture is the same as the previous one

(symbolic test), the context is considered not to have

changed and the candidate software architecture is

ignored (stability of the software architecture); Loop

on the next point in step 1. If no inference rule fires

(no software architecture is inferred due to lack of

knowledge), the latest software architecture inferred

at previous loops, even unadapted, is kept for safety

reasons.

4. If the candidate software architecture is considered as

new (i.e., the context has changed based on perceived

features), generate its XML file (see visualization in

e.g. Fig. 3) and run RTMaps in execution mode.

5. Loop on step 1 until all points of the data log are

scanned.

The above replay algorithm is implemented as a finite-state

automaton using inference rules --- see lines 9 and 18 in Fig. 2

on state inference (corresponding to step 4 in the above

algorithm) of the automaton.

As a result, 21 software architectures, including the one in

Fig. 3, are successively inferred and activated during the

replay of the above data log.

*** faire la manip de Guillaume sur le gros schema

RTMaps avec interactions et les 2 Petits. Mesure du temps de

réponse.

V. DISCUSSION

 Safety: Safety is a fundamental issue in the domain

of Intelligent Transportation Systems. Despite

perception’s inherent imperfection and potential bugs

in embedded source code (eventually due to

potentially poor software engineering practices),

safety has to be ensured for autonomous vehicles to

be accepted by public authorities. To this regard,

generating “small” software architectures, as in our

approach, leads to easier architecture debugging than

with “large” ones. However in our case, safety

concerns entail (i) careful analysis and review of

algorithms’ assumptions to elucidate applicability

zones in their input data (this raises difficult

questions such as: When does a deep learning

perception algorithm fail to recognize e.g. a

pedestrian, since machine learning algorithms are

trained on a finite (even large) data set?); (ii) careful

review of the knowledge base on expert inference

rules, to ensure that no lack of knowledge

(potentially leading to further expert’s interviews and

future research directions) can be proved off line ---

see the last test of step 3 of the algorithm of section

IV.B., aiming at always having an active software

architecture on the autonomous vehicle The

knowledge represented in knowledge bases on

computers cannot be larger than the expert’s

knowledge it comes from --- one exception is to

consider components’ parameters values manually

determined as a training set and to use supervised

learning to estimate unknown parameters value.

 Embedded reasoning: our model, as a reasoning

paradigm embedded on an autonomous vehicle, has

to be executed on a computer inside the vehicle, e.g.,

as a software meta-architecture. But since it is based

on perception of context/environment for further

inferences, it may be integrated as a component in a

recursive software architecture that it generates itself,

i.e., inference based on context/environment

generates a software architecture which includes an

inference RTMaps component, located downward

perception, which in turn will generate another

software architecture including the same inference

component, which in turn etc --- a concept similar to

continuation in functional programming languages

(e.g., in the Lisp dialect SCHEME). Or an alternative

implementation of our approach could be to

encapsulate the CLIPS inference engine and its

knowledge base in an RTMaps component, which is

connected to the regular components (e.g., SLAM,

perception, data fusion, path planning and control), as

above, but activates/deactivates possible variant

algorithms of each kind with a boolean variable to a

specific non-functional input port. This way, a

software architecture would be tailorable and tailored

at run time by a reasoning component inside itself ---

- instead of being fully re-generated each time the

context/environment changes, as in our approach.

 Response time: A reasoning algorithm, as an

inference engine activating a knowledge base such as

in our approach, cannot compete in computational

speed and response time with computationally fast

perception algorithms, such as [13]. Despite speedups

on pattern matching in inference engines, e.g., RETE

algorithm [4] and its variants, the response time of a

knowledge-based system with an inference engine

(including CLIPS’ instance) is indeed much slower

than fast perception algorithms, leading to fast

commands to the autonomous vehicle’s actuators ---

especially for large knowledge bases. This entails

that (i) a software architecture, generated for a

context/environment, is always late even if this

context/environment is perceived with a small

response time; adaptation to context cannot be as fast

as perception, it occurs indeed later than perception

in the ITS cycle. (ii) A software architecture aiming

at embedding reasoning, such as the one envisioned

in the previous paragraph, must incorporate

algorithms of various response times, the slowest

ones configuring the fastest ones --- a knowledge

base for configuring parameters’ value of

algorithms/components.

 Switching vs. evolving: in our approach, a software

architecture, once generated, replaces the previous

one because of a new perceived context/environment.

But, to take an analogy, when a human driver is

driving on a highway (initial context), as soon as he

is aware of the proximity of an exit to take (e.g., via a

traffic sign or a GPS), his perception changes, so as

to pay more attention to the right side of the road in

his field of view (change of focus of attention), and

have no risk to miss the exit, before taking the exit

when it arrives (target context). In other words, once

a new context/environment is known, even before it

is perceived, the software architecture should not

discretely switch to the new one, but continuously

evolve from the current software architecture towards

a new one.

VI. CONCLUSION

The algorithms (e.g., for perception) activated in an

autonomous vehicle in one context (e.g., highway) are not the

same as those activated in another one (e.g., urban).

Algorithms exhibit applicability zones in their input data, and

own assumptions. To make an autonomous vehicle adaptable

and context dependent, and thus capable of safely driving in

every context/environment encountered towards a destination,

we proposed existential software architectures and described a

knowledge base of algorithms (e.g., for perception), to infer at

run time the software architecture of an autonomous vehicle,

considered as a directed graph of nodes (i.e., algorithms) and

vertices (i.e., data flow). The dynamic knowledge base has

been tested in simulation for replay of data logs of an actual

prototype Zoé of autonomous vehicle, which proves the

feasibility of the concept.

Future work includes formalizing larger knowledge

to infer more algorithms/components, and merging real time

performances of successive software architectures using fuzzy

logic, as in [9].

ACKNOWLEDGMENT

The authors thank the members of the VEH08 group for
numerous fruitful discussions.

REFERENCES

[1] R. Alami, S. Fleury, M. Ghallab, F. Ingrand. An architecture for

autonomy. International Journal of Robotics Research. Vol. 17, no. 4,
pp. 315-337, 1998.

[2] Web site of NAVYA projec ARMA. http://navya.tech/?lang=en

[3] CLIPS project web site http://clipsrules.sourceforge.net/

[4] C. Forgy. On the efficient implentation of production systems PhD
thesis. C.S. Dept., CMU, 1979.

[5] E. Gat. On three layer architectures. A.I. and Mobile Robotis, D.
Kortenkamp. et al. Ed. , pages 195-210, 1998.

[6] B. Hayes-Roth. A blackboard architecture for control. Artificial
Intelligence, vol. 26, no. 3, pages 251-321, 1985.

[7] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, M. Balabanovic. A
Domain-Specific Software Architecture for Adapative Intelligent
Systems. IEEE Trans. on Software Engineering, 4(21):288-301, April
1995.

[8] A. Harmel. Le nouveau système réglementaire Lambert93 (in French).
GPS. http://www.geomag.fr/sites/default/files/68_91.pdf

[9] V. Milanes, J. Perez-Rastelli, E. Onieva, C. Gonzalez. Controller for
urban intersection based on wireless communication and fuzzy logic.
IEEE Trans. on Intelligent Transportation Systems, 2010.

[10] P. Morignot, M. Soury, P. Hède, C. Leroux, H. Vorobieva. Generating
scenarios for a mobile robot with an arm. Case study: Assistance for
handicapped persones. ICARCV, Singapore, Dec. 2010.

[11] Web site of the proprietary tool Real-Time Multi-Sensor Advanced
Prototyping System (RTMaps)
https://intempora.com/products/rtmaps.html

[12] A. K. Ramaswamy, B. Monsuez, A. Tapus. Solution space modellig for
robotic systems. Journal for Software Engineering Robotics (JOSER).
5(1), pp. 89-96, 2014.

[13] M. Revilloud, D. Gruyer, M.-C. Rahal. A new multi agent approach for
lane detection and tracking. ICRA, pages 3147-3153, 2016

[14] Robotic Operating System (ROS) web site http://www.ros.org/

Fig. 3. Visualization of the software architecture for obstacle detection with lidar and radar sensor. 5 inference rules are dedicated to graphical placement of

components on RTMaps interface, for debug purposes.

http://navya.tech/?lang=en
http://clipsrules.sourceforge.net/
http://www.geomag.fr/sites/default/files/68_91.pdf
https://intempora.com/products/rtmaps.html
http://www.ros.org/

