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Abstract

A good software architecture facilitates application system development, promotes

achievement of functional requirements, and supports system reconfiguration. We present a

domain-specific software architecture (DSSA) that we have developed for a large application

domain of adaptive intelligent systems (AISs). The DSSA provides: (a) an AIS reference

architecture designed to meet the functional requirements shared by applications in this domain,

(b) principles for decomposing expertise into highly reusable components, and (c) an application

configuration method for selecting relevant components from a library and automatically

configuring instances of those components in an instance of the architecture. The AIS reference

architecture incorporates features of layered, pipe and filter, and blackboard style architectures.

We describe three studies demonstrating the utility of our architecture in the sub-domain of

mobile office robots and identify software engineering principles embodied in the architecture.

Index Terms:  Software architecture, Domain-Specific Software Architectures, Software reuse,

Intelligent agents, Mobile robots.
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1. Introduction

The architecture of a complex software system is its “style and method of design and

construction” [25]. When applied appropriately, a good software architecture facilitates

application system development, promotes achievement of the system's functional requirements,

and supports reconfiguration. A “bad” architecture—or the absence of a clearly defined

architecture—can thwart all three objectives.

Designing and implementing a good software architecture (with associated development and

debugging environments) is challenging and expensive. Replicating this activity across many

projects for systems that have similar requirements unnecessarily inflates their expense.

Conversely, competition for limited project resources may limit the quality of the architectural

support that can be realized for a given system.

How can we achieve the benefits of good software architecture while containing the cost?

We have been studying a software engineering methodology based on domain-specific

software architectures (DSSAs)  [18, 36, 34, 35, 37, 24], where the term “domain” refers to a

class of applications. A DSSA comprises: (a) a reference architecture , which  describes a general

computational framework for a significant domain of applications, (b) a component library,

which contains reusable chunks of domain expertise, and (c) an application configuration

method for selecting and configuring components within the architecture to meet particular

application requirements.

We have been developing and experimenting with a particular DSSA for the domain of

adaptive intelligent systems (AISs)  that perceive, reason, and act to achieve multiple goals in

dynamic, uncertain, complex environments. AIS applications share functional requirements such

as: concurrent perception, reasoning, and action; sensitivity to externally determined priorities

and deadlines; and dynamic global control of the system's own behavior. As illustrated by the

taxonomy in Figure 1, the AIS domain may be partitioned into sub-domains defined by more
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specific shared task requirements.  For example, all autonomous robots require capabilities for

path planning and navigation, while all monitoring systems require capabilities for pattern

classification and fault detection.  Sub-classes may introduce additional task requirements or

place constraints on inherited requirements.

Instantiating the general definition given above, our AIS DSSA comprises: (a) an

implemented AIS reference architecture that supports the shared computational requirements of

adaptive intelligent systems and also provides a congenial framework for both compile-time and

run-time configuration of components, (b) a framework for decomposing application-specific

expertise into reusable components, along with an evolving library of implemented components,

and (c) an application configuration tool (not completely implemented) that takes as input a

domain description, instantiated and extended with application-specific requirements, and

automatically selects and configures the best available components from the library. Each of

these elements is described in section 2 below.
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Figure 1. A partial taxonomy of adaptive intelligent systems.



5

We have experimented with our DSSA in three major sub-classes of AIS applications: (a)

monitoring systems in four specific domains: intensive care [15, 20, 22], materials processing

[29], semiconductor manufacturing [27], and power plant operations [31]; (b) layout design

systems in two specific domains: protein structure modeling [17, 18] and construction site layout

[33]; and (c) autonomous office robots in two specific domains: office surveillance and office

delivery [19]. In section 3, we present three studies and their results from our work on office

robots to demonstrate the utility of the AIS DSSA. Section 4 presents conclusions.

2. The AIS DSSA

2.1 The AIS Reference Architecture

The AIS reference architecture is a heterogeneous mixture of common architectural styles

[9]. It is divided hierarchically into layers for different sets of computational tasks. The layers

and the relations among them provide properties of pipe and filter style architectures. Each layer,

itself, comprises a number of components, organized in a blackboard style, to allow for a range

of potentially complex behavior.

2.1.1 Organization of Layers

The architecture currently has two layers, or levels, to control concurrent physical and

cognitive behaviors. Behaviors at the physical level  implement perception and action in the

external environment. Behaviors at the cognitive level implement more abstract reasoning

activities such as situation assessment, planning, problem-solving, etc. Information flow is bi-

directional. The results of cognitive behaviors can influence physical behaviors and vice versa.

In addition to these categorical distinctions in behavior, levels differ in the following ways:

(a) Information at the cognitive level tends to be represented symbolically, while information at

the physical level tends to be metric. (b) Cognitive control plans (described in section 2.1.2.3)

can be temporally extensive and relatively complex, while physical control plans are severely
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bounded on both dimensions. (c) At the cognitive level, the temporal horizon for state

information is effectively unbounded in both directions, whereas at the physical level it is

effectively immediate. (d) Reaction time is an order of magnitude faster at the physical level than

at the cognitive level. In general, cognitive behaviors and representations are more abstract than

those at the physical level.

While our current architecture contains only two levels, it could incorporate more levels,

each with the same internal organization. The lowest level would interact with the external

environment and the next higher level; each higher level would interact only with the levels

immediately below and above it. The levels would exhibit graded differences along each of the

dimensions of difference mentioned above and, more generally, higher levels would organize

computations at higher levels of abstraction. Our AIS architecture has only two levels because

our current applications do not require finer resolution along these dimensions. [11, 6] discuss

similar architectures for robot agents. [1, 2, 21, 32] discuss extended multi-level architectures.

Our architectural organization provides the usual benefits of software layering. Restricting

interactions to those between adjacent levels provides modularity, allowing easy replacement or

enhancement of individual levels. (Note that this modularity is in addition to the modularity

provided within each level, as described in the next section). Also, hierarchically increasing

levels of abstraction facilitate construction of complex behaviors and manipulation of higher

level concepts [9, 1, 2].

However, our architecture differs from the common architectural layering in terms of how

adjacent levels interact. In conventional layered systems, interactions between levels occur

through function or procedure calls from one level to the next lower level. The interface

functions of each level serve as an abstract virtual machine to the next higher level [9]. In

contrast, our levels communicate with a more flexible message-passing style. All levels operate

concurrently, sending information to adjacent levels when appropriate. Thus, the architectural

organization also can be viewed as a bi-directional pipe and filter model [9], in which each level

reads from two input data streams and writes to two output data streams. (Of course the highest
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architectural level has only one pair of input/output streams with its single adjacent level and the

lowest architectural level has one of its two pairs of input/output strems with the external

environment.) As shown in figure 2, the two architectural levels asynchronously exchange

information. The physical level sends processed perceptual information, including feedback from

the execution of actions, to the cognitive level, while the cognitive level sends control plans to

the physical level. Otherwise they share the normal pipe and filter properties: they do not share

state or directly know about one another's computations. This hybrid of pipe and filter and

layered architectural styles is quite useful. The two styles do not conflict and both provide

modularity. In addition, the hybrid introduces the combined advantages of abstraction due to the

layering style and concurrent execution due to the pipe and filter style [9].
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Figure 2. AIS reference architecture. Arrows show data flow, not control flow.

2.1.2 Internal Organization of Each Layer

Each level of the architecture has isomorphic internal structure. The shared abstract control

model is embodied by the BB1 blackboard architecture [12, 13]. The BB1 system itself is used as

the implementation for the cognitive level and a much simpler implementation of the same basic

model is used for the physical level. As discussed in section 2.1.1, the simpler implementation at

the physical level restricts computational power in order to achieve order-of-magnitude speed-up.

The remainder of this section characterizes important aspects of this internal architecture. Section

2.1.3 discusses the BB1 blackboard style's distinctive control properties, which underlie the

flexible run-time behavior that is crucial for AISs.

2.1.2.1 Behaviors

Behaviors  embody the potential application of particular methods   to particular tasks.   For

example, at the physical level, one behavior might apply a reactive feedback-control method to

navigate along a path. At the cognitive level, one behavior might apply a specialized planning

method to sequence travel destinations, taking into account constraints on the order in which the

destinations must be visited.

Each behavior has a set of triggering conditions that can be satisfied by particular kinds of

events—changes to the information base/world model (see below) resulting from perceptual

inputs or previously executed behaviors. For example, a destination sequencing behavior might

be triggered whenever a new set of places to visit appears. When an event satisfies a behavior's

triggering conditions, the behavior is enabled and its parameters bound to variable values from

the triggering situation. A given behavior will be enabled, and therefore executable, whenever

events satisfying its triggering conditions occur, regardless of its relative utility in achieving the

current goals. Conversely, at each point in time, many competing behaviors will be enabled and

the system must choose among them to control its own goal-directed behavior.
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To support these control decisions, each behavior has an interface that describes the kinds of

events that enable it, the variables to be bound in its enabling context, the task it performs, the

type of method it applies, its required resources (e.g., computation, perceptual data, effectors), its

execution properties (e.g., speed, complexity, use of resources, completeness), and its result

properties (e.g., accuracy, precision). Interface descriptions resemble the software "wrappings"

of [23] and the model description language of [26], in providing information about how and

under what circumstances to use available resources.

2.1.2.2 Information base / world model (IB/WM)

The disparate behaviors a system performs interact with one another via changes they make

to the information base/world model—a declarative data base that houses a system's factual

knowledge, descriptions of its potential behaviors, and a temporally organized representation of

its run-time perception, reasoning, and action. In its capacity as knowledge base, the IB/WM

provides a skeletal conceptual graph to which type hierarchies of tasks, methods, and domain

concepts can be attached at compile time and accessed at run time. In its role as workspace, the

IB/WM provides a data exchange medium for interacting behaviors. Each executed cognitive or

physical behavior makes changes to the contents of the IB/WM, producing events that enable

subsequent behaviors and information that may influence their execution. For example, the

destination sequencing behavior mentioned above produces as part of its output a representation

of the planned destination sequence in the cognitive IB/WM. The appearance of a new

destination sequence will enable some of the available cognitive methods for path planning.

Thus, the IB/WM provides a workspace in which a system can coordinate the interactions and

products of groups of related tasks, each of which may be performed by any of a number of

alternative methods, in order to achieve higher-order goals.

2.1.2.3 Control plans

Control plans  describe the system’s intended behavior as a temporal pattern of plan steps,

each of which comprises a start condition, a stop condition, and an intended activity in the form
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of a 3-tuple: <task, parameters, constraints>. For example, the physical activity <navigate,

(origin, destination), {fast}>, describes the task of moving quickly from origin

to destination.

Control plans reside as data structures in the IB/WM, so the system can develop and modify

them dynamically by means of whatever control planning methods are enabled in its run time

situation. Note that control plans do not refer explicitly to any particular method in the system’s

repertoire. Unlike a simple list of machine instructions or program subroutines, they are not

directly executable. Instead, control plans only describe intended behaviors in terms of the

desired tasks, parameter values, and constraints. Thus, at each point in time, the system has a

plan of intended action, which intensionally describes an equivalence class of desirable behaviors

and in which currently enabled specific behaviors may have graded degrees of membership. (See

[14, 19] for more detailed treatment of these ideas.)

2.1.2.4 Meta-controller

A meta-controller  attempts to follow a system's current control plan by executing the most

appropriate enabled behaviors. Specifically, at each point in time, the meta-controller executes

the enabled behavior that: (a) is capable of performing the currently planned task with the

specified parameterization; and (b) has a description that matches the specified constraints better

than any other enabled behaviors that also satisfy (a). For example, a system might have two

methods for navigation, a fast dead reckoning method that uses minimal or no sensory feedback,

but requires an accurate metric map of the area, and a slower, reactive feedback-control method

that is capable of avoiding collisions and requires less information about the area. Given the plan

step <navigate, (origin, destination), {fast}>, this system will execute the

dead reckoning method if it has detailed metric map information about the area from origin to

destination, and will execute the reactive method otherwise. Conversely, given the plan step

<navigate, (origin, destination), {safe}>, the system will execute the reactive

method, to avoid collisions, regardless of the accuracy of its map. Thus, a system continuously
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improvises its specific course of behavior, following intended plans as well as possible, given the

behaviors that happen to be enabled along the way.

2.1.3 Key Properties of the Reference Architecture

The AIS has two key architectural properties, the pipe and filter properties of its layered

architecture and the adaptive properties of its control model, both of which are designed to

support the distinctive interactions required between AISs and their environments [13, 14, 16].

2.1.3.1 Pipe and filter properties of the layered architecture

The AIS architecture's  hybrid combination of layered and pipe and filter styles is designed to

support resource-bounded, time-sensitive interaction with dynamic, complex, uncertain

environments. Conventional application systems function in precisely structured, static

environments for which function call interactions are appropriate. For example, an operating

system's environment is the computer hardware, with its well defined behavior. Each successive

layer of the operating system provides a higher-level abstraction of the computational machine it

controls [9]. (One might argue that the user does not provide well-defined behavior; but the user

of conventional layered systems typically interacts with the highest layer in the hierarchy, not the

lowest.)  By contrast, AISs function in environments where unpredictable external events occur

asynchronously. The system has limited resources (computation, time, data, knowledge) for

responding to events and must satisfy constraints on the timing as well as the quality of its

responses. Successful performance in such environments demands opportunistic message

passing, continuous filtering of input data streams, and continuous management of output data

streams.

2.1.3.2 Adaptive properties of the control model

The AIS architecture's within-level dynamic control model is designed to support the

considerable flexibility of behavior required in AIS environments. A system can have in its

knowledge base many alternative behavioral methods for performing diverse tasks. It can
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coordinate different combinations and sequences of tasks and methods in order to achieve goals,

without planning the exact sequence of tasks and methods in advance. Whatever events occur

will enable associated behavioral methods. Depending on the current control plans, the meta-

controllers will choose to execute whichever enabled behaviors best match those plans. Thus, a

system can work toward high-level objectives by coordinating its performance of a variety of

tasks under a variety of context-specific constraints. It can plan and pursue an intended course of

action by incorporating the best available behaviors that are enabled in its immediate situation.

And it can dynamically adapt its plans in response to changing environmental conditions. As a

result, its plans and plan following are extremely robust over a range of situations. This run-time

flexibility is important precisely because of the dynamic and uncertain natures of the external

environment that are the defining characteristics of adaptive intelligent systems.

As demonstrated below, the dynamic control model also provides a framework in which

appropriate sets of components can be configured  at both design time and run time. Application

domain schemas  (see section 2.3) generalize the concept of descriptive control plans. They allow

an application builder to describe the kinds of cognitive and physical tasks a system might have

to perform and the kinds of constraints under which it might have to perform them. Moreover,

applications can be configured at design time and reconfigured later, while the system is in

operation. As shown in section 3 below, the meta-controller makes use of whatever plan-relevant

components are available and enabled at run time.

2.2 Framework for a Component Library

The AIS reference architecture provides an extremely general computational framework in

which to configure diverse software components and coordinate their activities. Amplifying this

capacity for architecture reuse, we also provide a framework for developing software

components that can be reused and reconfigured easily in a large domain of applications.

Specifically, we decompose expertise along three orthogonal dimensions (Figure 3) so that each
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of the three components produced by a given decomposition may be reused in combination with

multiple (not necessarily all) alternative components on the other two dimensions.

Method =
  Operations & Strategies
  Resource Requirements
  Performance Properties

    Deductive  Case-Based  Associative

Subject Domain =
  Ontology
  Semantics
  Factual Knowledge
  Metric Knowledge

Task =
  I/O Specifications
  Resource Parameters
  Performance Parameters

        Assess

           Plan

   Schedule

     Monitor

     Explain

                              Office

                        Critical Care

                  Semiconductor Mfg.

Figure 3. Orthogonal components of expertise: definitions and examples.

Tasks are classes of jobs a system might perform, defined by their abstract input/output

specifications, independent of method and domain. For example, the task of path planning

transforms an initial and final location into a representation for a path and can be performed by a

number of different methods and in many different domains. Tasks may be specified further by

imposing resource limitations (e.g., time limits) or performance requirements (e.g., precision,

reliability). For example, an agent (used interchangeably with "system") may need to plan very

quickly, but not necessarily guarantee optimal plans. As discussed in section 2.3, certain classes

of applications are defined by characteristic configurations of required tasks along with potential

constraints on the performance of those tasks. For example, a mobile office robot must perform

navigation, but a bedside critical care monitoring agent need not.
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Methods are classes of computational approaches a system exploits for a variety of tasks,

independent of domain. They are defined in terms of sets of abstract component operations, each

of which may be enabled by run-time events, along with abstract strategies for selecting and

sequencing enabled operations at run time in order to achieve goals. For example, generative

reasoning and case-based reasoning are two different cognitive methods a system might apply to

a planning task. Case-based planning would comprise abstract operations such as “find a similar

case” and abstract strategies such as “find the n most similar cases, then map the n cases onto the

present situation, then ...” Methods for a given task may differ in their resource requirements

(e.g., amount of real time, computation time, sensor utilization, domain knowledge), run-time

properties (e.g., interruptability, intermediate results, incremental solution improvement), or their

characteristic results (e.g., precision, reliability, qualitative contents of conclusions). Thus,

different methods that are equivalent in their logical applicability to an abstract task may be more

or less appropriate for different task instances or domains. For example, case-based methods may

be more appropriate than generative methods for tasks that require fast real-time performance,

but do not require guaranteed optimal solutions. More generally, case-based methods are

appropriate only in domains for which large numbers of relevant cases exist.

Subject domains  comprise the different kinds of knowledge (e.g., ontology, facts, relations) a

system might have regarding its environment or subject matter, independent of the tasks it might

perform or the methods with which it might perform them. For example, an office domain might

include both cognitive knowledge (e.g., an ontology of office objects and services, a symbolic

model of the relationships between certain objects and their locations, a topological model of the

office layout) and physical knowledge (e.g., metric models of passageways, recognition

templates for important objects). This knowledge could be used to support various methods for

various tasks and jobs (e.g., office surveillance robot, office delivery robot, office design

assistant).

Our three-way decomposition of expertise combines the complementary decompositions of

software engineering and knowledge engineering practice. Software engineers typically
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decompose software into its interface (conflating our task and subject domain components) and

its implementation (our method component). Knowledge engineers typically decompose

software into its knowledge (our subject domain component) and its inference engine (conflating

our task and method components) [5]. As demonstrated in the experimental results in section 3,

our three-way decomposition expands opportunities for reuse. A component along one

dimension might be reused in combination with alternative (not necessarily all) components from

either or both of the other two dimensions to produce a large number of distinctive competencies.

For example, at the cognitive level, either generative or case-based methods could be applied to

either the destination sequencing or path planning tasks in several robot domains (e.g., office or

factory surveillance, office delivery, household chores) or autonomous vehicle domains (e.g.,

errands, chauffeur). Similarly, at the physical level, either reactive feedback-control (closed loop)

or blind dead reckoning (open-loop) navigation could be used to perform a path following task in

a variety of domains. For all of these configuration and reuse purposes, a descriptive language of

tasks, methods, and domains is critical. In our work we have identified a number of descriptive

characteristics that are important in our experimental domains. However, developing a formal

descriptive language for software components remains an important research problem. (See also

[23, 26].)

2.3 Application Configuration

Even though the AIS architecture supports run-time enabling and selection of competing

components, application system configuration remains important because inclusion of "extra"

components in an application may not increase utility and may degrade performance. Inclusion

of extra components will not increase utility if, for example, the components are irrelevant to the

application, the necessary hardware (e.g., sensors, effectors) is not available on the application

platform, or the required knowledge or data are not available in the application domain. Inclusion

of extra components will degrade performance if, for example, they cause the knowledge base to

exceed space limitations or meta-control decision time to exceed acceptable response latencies.
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Together, the AIS reference architecture and the orthogonal decomposition of expertise

support both design-time and run-time system configuration. At design time, one can select and

configure an application-specific set of required tasks, an application-specific set of appropriate

methods for performing those tasks, and the application-specific domain knowledge required to

apply those methods to those tasks. In cases where a given task must be performed under

variable circumstances, suitable alternative methods can be selected and configured at design

time and then selectively enabled and executed at run time. At run time, if useful new

application-relevant task, method, or domain components should become available, the new

components can be substituted for old ones or added to the knowledge base alongside the old

ones, without interrupting system operation. The architecture's event-based enabling of

behavioral methods, its plan-based meta-control choices among competing methods, and its

efforts to retrieve necessary knowledge from the IB/WM are not preprogrammed to require any

particular tasks, methods, or domain facts; they operate on whatever task, method, and domain

knowledge are available in the IB/WM at run time. The AIS architecture can accommodate new

components acquired through machine learning in exactly the same fashion, as demonstrated for

domain knowledge in the experiments below.

As demonstrated in our initial experiment below, we already can create diverse agents at

design time and reconfigure agents at run time by manually selecting and automatically loading

different combinations of components into the architecture. If the configuration of components is

conceptually complete (e.g., it includes the required domain knowledge to apply at least one

method to each of the specified tasks), the agent runs immediately and makes appropriate use of

all available components. As illustrated in Figure 4, each agent instantiates a different,

application-specific configuration of cognitive and physical task, method, and domain

components. Application shemas will further automate this process. With them, we propose to

use an application configuration tool to automatically configure diverse AIS agents at both

design time and run time.
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Figure 4. Building a variety of individual agents by configuring selected components within the reference
architecture.

Application schemas  generalize the abstract language of control plans (specified by tasks,

parameters, and constraints), to describe the range of behavior capabilities an agent might need

for its particular application. For every potentially useful task in an application, one or more

schema entries specify the subject domain elements with which the task might be instantiated

and the constraints that might be applied. Formally, an application schema is a 3-tuple: <task,

domain, constraints>. For example, the schema entry <plan-destination-sequence,

KSL offices, {fast, optimal}> specifies that the agent might have to perform a

destination planning task, instantiated for any subset of the KSL offices, under either of two

constraints: fast, real-time planning or guaranteed optimal plans. Given a schema entry, the

application configuration tool would select the best available components for meeting each of the

specified constraints, using the same component characterizations used by the meta-controllers

for run-time selection among enabled components within an already configured agent.
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Thus, the configuration tool and the meta-controller use the same language and semantics to

describe and select task, method, and domain components. However the configuration tool

operates at design time (or at run time in the case of system reconfiguration), assembling the

repertoire of components an agent will need in order to function effectively over a period of time

in its anticipated application environment. The meta-controller operates at run time, selecting the

best available components in the agent's repertoire to apply in the present situation.

We envision a taxonomy of domain-specific skeletal schemas, corresponding to the AIS

taxonomy sketched out in Figure 1. Each sub-domain schema would specialize and elaborate its

parent schema. For example, an autonomous robot schema might describe an agent that can

sequence a set of destinations using constraints, plan a path between two successive destinations,

and control the robot's motion to follow a path. This schema would be quite general, specifying

only a small number of components and a variety of constraints under which they might have to

be performed. An office robot schema might describe a more specific kind of autonomous robot,

specifying more tasks and a more restrictive set of constraints under which they may have to be

performed. An application builder would begin by selecting the most specific schema that

applied to the target application and then modify, specify, or elaborate it.

3. Empirical Studies

3.1 Overview of the Three Studies

We conducted three empirical studies of our approach using a Nomad 200 mobile office

robot [39]. The Nomad 200 has hardware for sensing, moving, and communicating. For sensing,

the robot has an orientable 2D laser beam and three sensor rings holding: 16 sonar sensors, 16

infra-red sensors, and 20 pressure-sensitive bumpers. For moving, it has effectors to control

translational and rotational speed and rotation of the laser. For communicating, the robot has a

voice synthesizer and can exchange electronic messages with other computers. The Nomad robot

simulator provides the same interface and command language used by the actual Nomad robot
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for sampling sensor data and actuating effectors. It permits simulation of uncertainty for both

sensing and moving. The three studies differ on several dimensions, summarized here (see Table

1) and described in detail in section 3.2.

In study 1, we automatically configured three different agents to control a simulated robot

performing a surveillance job in office environment 1. Each agent instantiates the AIS

architecture and a different subset of the components from component library 1. All of the

components in library 1 were developed by our research group.

In study 2, we configured a single agent to control a simulated robot performing a delivery

job in office 2. The agent instantiates the AIS architecture and all of the components in library 2,

which includes a subset of library 1 components developed for the surveillance job, new

components developed by our research group for the delivery job, and new components imported

from another research group having no particular interest in either the surveillance or delivery

job.

In study 3, we configured a single agent to control a physical robot performing the delivery

job in our own laboratory, KSL Building C (office 3). The agent instantiates the AIS architecture

and all of the components in library 3, which includes the same components as library 2, with

three exceptions: the domain component is office 3 instead of office 2, the physical method

components were modified to cope with real-world complexities and noise, and the learning

component was excluded.

Table 1. Summary of differences between studies 1, 2, and 3.

Study 1 Study 2 Study 3

Number of Agents 3 agents 1 agent 1 agent

Robot Embodiment simulated simulated physical

Agent Job surveillance delivery delivery

Office Environment office 1 office 2 office 3 (= KSL Building C)

Components Used library 1 library 2 (= subset of

         library 1 + new)

library 3 (= library 2 +

          modifications)
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As discussed in section 3.3, each of the three studies demonstrates, in its own way, the

advantages of the AIS DSSA: promotion of the functional requirements of adaptive intelligent

systems, facilitation of new application development, and support for system reconfiguration. As

discussed in section 3.4, the three studies together demonstrate the cumulative advantages of the

DSSA in evolutionary development efforts.

3.2 Details of the Three Studies

3.2.1 Study 1: Surveillance with Three Different Simulated Robots

3.2.1.1 The surveillance job

The surveillance job requires an agent to respond to two kinds of electronic messages

received asynchronously at run time, basic surveillance instructions and alarm signals. Basic

surveillance instructions designate the regular destinations for the job, which are a subset of the

potential destinations on the agent’s map, and constraints the agent must satisfy in visiting any

regular or alarm destinations (e.g., pair-wise ordering constraints, relative frequencies, etc.).

Alarm signals identify alarms occurring “now” at any subset of potential destinations on the map

(possibly including regular destinations). To do its job well, a surveillance agent must perform

three activities. It must repeatedly visit each of the regular destinations in accordance with the

constraints among them. Whenever alarms occur, it must visit the alarm destinations as quickly

as possible, in accordance with the constraints. When possible, it must acquire new knowledge

(e.g., metric map information, cases of destination sequences) and exploit both new knowledge

and new behavioral methods (e.g., new planning or navigation methods) to improve its

performance.

3.2.1.2 Component library 1

For this study we developed an initial component library containing components for the

tasks, methods, and subject domain knowledge useful for the surveillance job.
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Figure 5. Office 1 subject domain used in study 1.

The domain of study 1 is office 1 (Figure 5). The cognitive domain component is a

topological map that represents office 1 as a set of potential destinations (shown as alphabetic

characters), intervening nodes (shown as numbers), and connecting paths. The physical domain

component includes metric information about all objects and spaces, but no information about

potential destinations.

Library 1 also includes components representing seven cognitive and physical tasks required

for the surveillance job (Table 2) and 1-3 alternative methods for each of these tasks (Table 3).

While some of these methods are powerful and robust, others are rudimentary or only simulate

part of their ostensible functionality. Our purpose in creating and presenting them here is not to

claim anything about the methods themselves, but to illustrate the kinds of methods that might

exist in a component library and how they can be configured in our AIS architecture to produce a

variety of surveillance agents.
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Table 2. Cognitive and physical task components in library 1.

Input Output
Cognitive Tasks: (from physical level) (to physical level)
(1) Assess communication New message received =

Regular destinations or Alarm
destinations

New goal = New set of
destinations, Context-specific
constraints

(2) Plan reasoning Changed goal = New goal or
Prior goal achieved

New reasoning plan = Sequence
of reasoning tasks, Context-
specific constraints

(3) Sequence destinations New goal New destination sequence =
Sequence of destinations under
[constraints]

(4) Plan routes New destination plan New route plan = Sequence of
paths [a->b] under [constraints]

(5) Monitor execution New perceived node New physical command =
Navigate [next path] under
[constraints]

Physical  Tasks: (from cognitive level or
environment)

(to cognitive level)

(6) Navigate New node perceived (from
environment) and Neighboring
node (from cognitive level)

At new node, New node
perceived, Other conditions
perceived

(7) Interpret messages New electronic message (from
environment)

New perceived problem =
Regular destinations or Alarm
destinations

Table 3. Method components for cognitive and physical tasks in library 1.

Methods Requirements Advantages
Cognitive Tasks:
(1) Assess communication Message driven Messages
(2) Plan reasoning Skeletal planning Skeletal plans
(3) Plan destination
sequence

Case-based planning
Generative planning

Relevant cases
Computation time

Fast planning
Optimal, complete,
case learned

(4) Plan routes Graph search-D

Graph search-U

Node-path graph

Marked graph + Real
time

Short distance &
time
Learns new paths

(5) Monitor execution Step through Sequential plan
Physical Tasks:
(6) Navigate Dead reckoning

Feedback-control
Mapping nav.

path known
Sonar, infra-red
Sonar, infra-red, laser

Very fast
Fast, safe
Safe, path learned

(7) Interpret messages Template based Alarm template

We summarize the seven tasks and their associated methods as follows. Note that, in all

cases, the enabling and execution of methods are decoupled; enabling is automatic and
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inevitable, given the relevant events, whereas execution is discretionary and depends on a meta-

control decision.

(1) Assess communication. When a newly perceived communication gives regular

surveillance instructions, the agent sets a goal to visit the specified set of regular destinations,

with the context-specific constraints “safe, learning, fast.” When a new problem signals an alarm,

the agent sets a goal to visit the specified alarm destinations, with the context-specific constraints

“fast.”

(2) Plan reasoning. Given a new regular goal, the agent instantiates skeletal control plan R:

(a) <plan-destination-sequence, (reg-dest-set, reg-dest-sequence),

{safe, learning, fast}>

(b) <plan-routes, (reg-dest-sequence, reg-path-sequence),

{safe, learning, fast}>

(c) <monitor-execution, (reg-path-sequence),

{safe, learning, fast}>

(d) Go to (b) to begin the next surveillance round.

Given a new alarm goal, the agent temporarily deactivates plan R and instantiates skeletal control

plan A:

(a) <plan-destination-sequence,

(alarm-dest-set, alarm-dest-sequence), {fast}>

(b) <plan-routes, (alarm-dest-sequence, alarm-path-sequence),

{fast}>

(c) <monitor-execution, (alarm-path-sequence), {fast}>

In addition to its goal-specific dynamic plans, static cognitive plans always influence the agent to

plan reasoning and assess communication.

(3) Sequence destinations. Given a new goal, a case-based method retrieves a previously

generated sequence for the specified destinations for reuse. It is fast but only applicable when a
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relevant case is available. Alternatively, a generative method applies the relevant static

constraints to construct the optimal sequence for the specified destinations and stores that

sequence as a new case. This method is slower, but works for every goal.

(4) Plan routes. Given a new destination sequence, two alternative methods search the

topological graph of traversable space (e.g., corridors). Method D searches for the most direct

route to minimize travel distance and time. Method U searches for a route that includes

previously untravelled paths, within some general constraints on distance, to create an

opportunity to learn metric information in new regions.

(5) Monitor execution. Given a new route, a single method steps through a specified route

plan, requesting the physical level to navigate along each successive leg of the journey while

satisfying the specified constraints, and perceptually confirming its arrival at each expected next

location.

(6) Navigate. Given a new leg to traverse, a dead reckoning method uses metric knowledge

of the environment along a planned path to move quickly to the next node with little or no

sensing. Alternatively, a reactive feedback-control method uses sonar and infra-red sensors to

move more slowly, but more safely. An mapping method uses sonar and infra-red to move even

more slowly, using the laser to gather metric map information. (We simulate this learning by

prestoring all metric path information and making it accessible to the agent only after it

traverses1 a given path using the information-gathering method.) All three methods

asynchronously send whatever sensor data they acquire to the cognitive level.

(7) Interpret messages. Given a new electronic message, a single template-based method

interprets the message.

3.2.1.3 Illustration of agent 1a's performance

We present excerpts from the performance of a particular agent, Agent 1a, which has all of

the task, method, and subject domain components of library 1. Section 3.3.2 describes

differences among the three agents configured in study 1.
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In round 1 (Figure 6), Agent 1a is in office 1 for the first time, positioned at node 6. It

receives an electronic message that specifies: (a) a set of regular surveillance destinations: d, e,

and i in Figure 6; and (b) all constraints that apply to destinations in office 1. Agent 1a assesses

its situation given this message, committing to the new goal and an appropriately ordered set of

constraints: safe, learning, fast. Given the new goal, Agent 1a instantiates skeletal reasoning plan

R (for regular destinations, rather than plan A for alarm destinations), which guides its

subsequent cognitive behavior. To plan its destination sequence, Agent 1a uses generative

planning (its only applicable method because it has no learned cases) and learns the resulting

plan as a new case. For route planning, it chooses graph search U (rather than graph search R) to

satisfy its learning constraint. Agent 1a then monitors its own plan following, sending each

successive plan step to the physical level for implementation and waiting after each one to

perceive that it has arrived at the intended destination. Since all paths are unlearned, it uses its

mapping method for each successive instance of the navigate task.
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Figure 6. In round 1, agent 1a makes a regular surveillance round, visiting nodes in the sequence: 6, 9, 8,
d, 8, 7, 10, i, 10, 11, 12, e. Dotted and dashed lines indicate use of mapping nav. and feedback control
methods.

In round 2 (illustrated in Figure 7), Agent 1a returns to step (b) of its reasoning plan to replan

its route for a second surveillance round.  It plans a route from its current location, e, back to its

first regular destination, d, and then chooses graph search U (under its learning constraint) to try
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to plan a different route among its destinations. However, because all potential new paths are too

far out of the way,  Agent 1a plans the same  paths after all. It monitors plan following at the

physical level, using its mapping method to learn the new paths from e to d, but using its faster

feedback control method on already learned paths.

As Agent 1a approaches destination d, it receives a message reporting alarms at destinations

a and b. Its static reasoning plans (plan reasoning and assess the situation), guide it to reason

about the alarms, while monitoring its current plan. Agent 1a assesses its new situation,

committing to the new alarm goal and a single constraint: fast. It replaces its current reasoning

plan, instantiating skeletal reasoning plan A for the new alarms. It uses its generative method to

plan the sequence of alarm destinations and learns the plan as a new case. Given its constraint to

be fast, Agent 1a now chooses graph search D for path planning to minimize planning time and

distance and maximize speed. It monitors plan following for the alarm destinations at the

physical level. It uses feedback control to navigate along every path on its route to the alarm

destinations. However, guided by the constraints of reasoning plan step d (safe, learning, fast), it

uses mapping nav. to learn new paths on the return trip.
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Figure 7. Agent 1a begins its second surveillance round, interrupting it to respond to an alarm, visiting
nodes in the sequence: e, 12, 13, 9, 8, d, 8, 7, 4, 3, a, 3, b, 3, 4, 7, 10, i, 10, 11, 12, e. Dotted and dashed
lines indicate use of mapping nav. and feedback control methods.
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In round 3 (illustrated in Figure 8), Agent 1a encounters the same situation as in round 2:

alarms at destinations a and b. But this time, it responds faster because it has learned the

knowledge required by its faster case-based and dead reckoning methods. Again, while

traversing known paths on its return from the alarms, Agent 1a uses its safer feedback-control

method.
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Figure 8. In round three, Agent 1a exploits recently learned subject domain knowledge to respond faster
to a repeat alarm, visiting nodes in the sequence:  e, 12, 13, 9, 8, d, 8, 7, 4, 3, a, 3, b, 3, 4, 7, 10, i, 10, 11,
12, e. Dotted, dashed, and solid lines indicate use of mapping nav., feedback control, and dead reckoning
methods.

3.2.2 Study 2: Delivery with a Simulated Robot

3.2.2.1 The delivery job

The delivery job requires an agent to respond to electronic messages received asynchronously

at run time. Messages may require the agent to: (a) deliver a verbal or e-mail message to a person

in a known location; (b) deliver a document to a person in a known location; or (c) create and

deliver copies or slides of a document to a person in a known location. The agent also can set

goals for itself to learn the physical dimensions of physical objects newly detected in the course

of its deliveries. Each goal may have an associated priority or a real-time deadline, which the
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agent tries to satisfy. The agent also tries to minimize time and distance traveled, to learn

passively at all times, and to learn deliberately (pursue learning goals) when convenient.

3.2.2.2 Component library 2

For study 2, we developed library 2 for the new delivery job and the new environment. Some

of the components are duplicates or extensions of components from library 1. Others are new

components implemented by us or by members of another laboratory at Stanford.

The cognitive domain component for study 2 includes a map (see Figure 9) representing the

office 2 environment. Unlike the map for study 1, it does not include any  nodes. However, it is

augmented with symbolic information about where particular people are located and in which

offices particular functions (e.g., copying) can be performed. Again, the physical domain

component includes metric information about static objects and spaces in the environment, but

no semantic information. Dynamic or unanticipated objects do not appear in either component.

Copier Herve

Michelle

(Library)

Scott

George
Ronny David

Feigenbaum

Nancy Richard

Anthony

Grace

Figure 9. Office 2 subject domain of study 2.

Table 4 characterizes the ten task components used in the delivery job. Four of these

correspond to or slightly elaborate on task components from library 1. Assess communication

was extended to interpret a greater variety of requested tasks. Plan tasks is an extension of plan
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destination sequence to handle the increased variety of tasks and to create both linear and non-

linear plans. Monitor plan execution was extended to monitor these more complex plans.

Navigation was generalized to take coordinates, rather than map nodes, as arguments. Exactly

one method was used for each task in this study, but multiple methods per task could easily be

incorporated.

Table 4. Cognitive and physical tasks components used in Study 2.

Input Output
Cognitive Tasks:
(1) Assess situation based
on perception

New perceived sensor data If unanticipated obstacle, New
goal = Learn it

(2) Assess situation based
on communication

New message received New goal = Requested goal,
priority, deadline

(3) Group goals New goal If compatible with pending goal or
goal group, Make new goal group

(4) Plan tasks New goal group New plan = Sequence of physical
tasks to achieve all goals in goal
group

(5) Schedule real-time tasks New plan includes RT tasks Incorporate the RT tasks in the
real time schedule

(6) Modify control plan New goal or goal achieved New reasoning plan =
Add/remove reasoning tasks for
goal

(7) Monitor plan execution Perceived completion of task New physical command = Next
planned physical task

Physical  Tasks:
(8) Navigation New navigation task Go to and perceive commanded

destination
(9) Interpret messages New electronic message Parsed instruction
(10) Learn map New sensor data Detect & record unanticipated

obstacles

3.2.2.3 Illustration of agent 2's performance

We present excerpts from the performance of agent 2, starting at point a in Figure 10.

Agent 2 receives an electronic message: “Tell David: The book Human Information

Processing is not available at this time, priority = 4.” It makes Plan 1, to go to David's office to

deliver the message and begins monitoring execution.

Reaching point b, Agent 2 receives two new messages: “Bring 5 copies of Feigenbaum's

computer industry paper to Anthony, priority = 3.” and “Tell Michelle: The meeting is canceled,



30

priority = 3.” Since the goals are independent, agent 2 makes separate plans for achieving them,

Plans 2 and 3, while continuing execution of Plan 1.

Reaching point c, Agent 2 detects an unexpected obstacle (the box marked x). It adds a

symbolic representation of the new obstacle to its cognitive map and metric representation of its

perception (the heavy border) to its physical map. It creates a goal to learn the obstacle's

complete dimensions.

At the same time, Agent 2 receives another message: “Bring Feigenbaum's expert systems

paper to Michelle, priority = 5.” This new goal is related to the two pending goals: it requires

fetching something from Feigenbaum's office and delivering something to Michelle. Therefore,

Agent 2 discards Plans 2 and 3 and creates Plan 4, which merges common sub-goals to achieve

all three goals more efficiently. At point d in Figure 10, Agent 2 interrupts its execution of Plan 1

to begin executing Plan 4, which has higher priority.

Completing the first goal of Plan 4 (delivering Feigenbaum's expert systems paper to

Michelle), Agent 2 goes to the copy room to make copies of Feigenbaum's computer industry

paper. While it is making the copies, Agent 2 receives three new messages: “Tell Scott: The

meeting has started, priority = 5, deadline = now;” “Tell Nancy: The workshop is full, priority =

5, deadline = soon;” and “Bring the book Building Expert Systems to Richard, priority = 2,

deadline = today.” Agent 4 begins scheduling the tasks it must perform for each of these goals to

meet their deadlines. Since delivering the message to Scott has the deadline "now," it works on

that goal first and interrupts its execution of Plan 4 (at point e) to begin executing the newly

created Plan 5. At the same time, it constructs Plans 6 and 7 for its other new goals.

On completing Plan 5, Agent 2 executes Plan 6 in order to meet its deadline, “soon.” Since

Plan 7 has a longer deadline, “today,” Agent 2 can handle its pending plans in priority order for

the time being. It resumes the interrupted Plan 4, resumes the interrupted Plan 1, then executes

Plan 7 (not shown in Figure 10). Agent 2 also will construct and eventually execute a plan to

achieve its learning goal for box x.
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Figure 10. Excerpt of agent 2's performance of the delivery job in office 2.

3.2.3 Study 3: Delivery with a Physical Robot

In study 3, a real Nomad 200 robot performs the same delivery job in a real building, KSL

Building C. Library 3 contains the same components used in study 2, except that the domain

components describe the new office (Figure 11) and the navigation component was made more

robust to handle real-world complexity—sensor noise and error in effector control. The map

learning component needs similar improvements, which we have not made yet. Except the

learning, Agent 3 replicates all of the delivery behavior of Agent 2.
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Figure 11. Office 3 (KSL Building C) domain used in study 3.

3.3 Results of the Three Studies

3.3.1 Meeting AIS Requirements

We briefly describe how the agents from these studies demonstrate the basic functionality

required by the broad class of adaptive intelligent systems. (See [12, 13, 14, 16, 19] for further

discussion of AIS functionality.)

 In all three studies, agents perform concurrent perception, action, and cognition tasks, such

as making new plans while navigating to a destination and being informed of a new goal. Based

on their relative priorities and deadlines, agents “juggle” activities related to multiple, competing

and complementary, asynchronously-arriving goals. Agents dynamically interrupt their execution

of both cognitive and physical plans in favor of plans driven by other goals having higher

priorities or shorter deadlines. Agents deliberately coordinate tasks relevant to related sets of

goals and opportunistically choose the best available methods for tasks based on resource

availability and performance constraints. Other things being equal, agents in all three studies

focus attention on higher-priority and shorter-deadline activities. Agents automatically use new

knowledge, such as new cases or new map information acquired at run-time. Finally, in all three
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studies, agents construct dynamic control plans to guide their cognitive behavior, which in turn

influence their construction of plans to guide their physical behavior.

Although it is not the goal of this paper to comparatively evaluate alternative agent

architectures, it is worth noting that other researchers have proposed and experimented with

interesting agent architectures, for example [11, 6, 28]. Each of these architectures is designed to

address a particular model of required agent functionality, overlapping but not identical with our

model of AIS functionality. For present purposes, our AIS architecture can be distinguished as

the only architecture that: (a) provides a uniform reasoning framework for constructing,

modifying, and following abstract control plans at run time; (b) supports agents in a broad range

of application domains (with the exception of Soar); and (c) directly supports design-time and

run-time configuration of diverse agents out of reusable components.

3.3.2 Design-Time Configuration of Diverse Agents

We created a simple menu-based interface that allows an application builder to select library

components for automatic configuration in an instance of the AIS architecture. If a user selects a

sufficient set of task, method, and domain components for the job at hand, the resulting agent is

ready to run immediately. For example, to perform the surveillance job of study 1, a sufficient set

of components must include all seven task components in library 1, at least one method

component for each task, and the relevant office 1 domain components.

Since multiple methods are available for three of the tasks in library 1, it is possible to

configure different surveillance agents for different surveillance jobs. Table 5 describes three

jobs that differ in their available resources and performance constraints, along with the three job-

specific agents we configured. Job 1a provides ample computation, space, and power and

imposes all three performance constraints. Therefore, we configured all available methods to

give agent 1a maximum run-time flexibility. Job 1b limits space and computation, but imposes

no deadlines. Given the space limitation, we configured only the most useful subset of method

components in agent 1b: the case-based method because it is computationally efficient; Graph-
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Search-D because new path exploration is unnecessary; Feedback-control because mapping

navigation and dead reckoning are unnecessary. Job 1c limits space and power, but imposes no

deadlines. Again we configured only the most useful subset of method components in agent 1c:

the generative method because it produces optimal destination sequences; Graph-Search-D

because new path exploration is unnecessary and consumes power; and Feedback-control

because mapping navigation and dead reckoning are unnecessary and consume power. Each of

the three agents performs its surveillance job well under the anticipated run-time conditions.

Agents 1b and 1c fail in the obvious ways under unanticipated conditions (e.g., deadlines). Agent

1a flexibly adapts to the full range of run-time conditions.

Table 5. Configuring different agents for different surveillance jobs..

Job 1a Job 1b Job 1c
Resources Available:

Computation
Space
Power

Ample
Ample
Ample

Limited
Limited
Ample

Ample
Limited
Limited

Performance Constraints:
Efficiency
Safety
Deadlines

Important
Important
Some deadlines

Important
Important
No deadlines

Important
Important
No deadlines

Agent 1a Agent 1a Agent 1a
Components Configured:

Sequence destinations

Plan routes

Navigate

Case-based
Generative

Graph Search-D
Graph Search-U

Dead Reckoning
Feedback-control
Mapping navigation

Case-based

Graph Search-D

Feedback-control

Generative

Graph Search-D

Feedback-control

  Although we did not demonstrate the selection process for the full set of components from

all three studies, it would be straightforward to set up the same menu-based interface to do so.

However, even with a small number of components, the user needs more assistance than an

unstructured menu. The application schemas discussed in section 2.3 would allow the user to

begin with a basic job-appropriate agent configuration and to complete it by making a smaller

number of more structured decisions. As Winograd [38] observes: “The fundamental use of a
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programming system is not in creating sequences of instructions for accomplishing tasks (or

carrying out algorithms), but in expressing and manipulating descriptions of computational

processes and the objects on which they are carried out.” Developing formal languages for

describing application requirements, application schemas, and available components is an

important research direction [23, 26].

3.3.3 Run-Time Reconfiguration

Our studies demonstrate two kinds of run-time reconfiguration of application systems. First,

in all three studies, agents acquired new domain knowledge (e.g., destination sequence cases,

metric map information) both incidentally and deliberately. Agents used newly acquired

knowledge at the first subsequent opportunity to enable method components that required it.

Second, in study 1, we loaded the case-based planning method and the dead reckoning

navigation method into a running agent initially configured without them. The agent used the

new methods at the first subsequent opportunity to perform tasks for which they were appropriate

and for which it had the necessary knowledge. In both cases, agents exploited the new

knowledge and method components with no modification of existing components. In general, we

can add or remove components from the agent's IB/WM at any time. As long as the agent has at

least a minimally complete set of components for the job at hand, it will continue performing to

the best of its ability with the evolving set of available components.

3.3.4 Cooperative Evolutionary System Development

Together, our three studies provide a case-study of the efficacy of the AIS DSSA approach

on a multi-person, evolutionary system development project. Study 1 presented an initial set of

system requirements, and as frequently happens in successive stages of real system development

projects, study 2 presented a new, but not disjoint, set of system requirements. We designed and

implemented the study 2 agents by reusing the entire AIS architecture and a few of the

components we had implemented for study 1. Study 3 dealt with the switch from simulation to a
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real, physical robot, requiring substantially more robust perception and navigation methods. We

simply replaced the subject domain maps with those for the new environment and our

collaborator modified the navigation component.  Agent 3 immediately succeeded in controlling

the Nomad robot's performance of the delivery job in the KSL offices.

Although our agents were experimental software systems, and some of their components

were quite simplistic, they were not “toy” systems. The AIS architecture comprises the BB1

software system at the cognitive level (30K lines of Lisp code) and a newly implemented control

loop at the physical level (400 lines of Lisp code). Components for agent 1 added another 4K

lines of Lisp code. Components for agents 2 and 3 added another 7K lines of Lisp code and 6K

lines of C code.

Our core team comprised five individuals who collaborated on the design and implementation of

all agents in all three studies. Despite the small group size, group dynamics and the academic

research environment amplified the problem of coordination and manifested many of the same

issues that arise in larger, professional software teams. Members of the group possessed no

shared model of computation, used different programming styles and even different languages,

worked asynchronously, with no member of the group acting as manager or coordinator of the

many separate sub-projects, and prior to this project had not worked together. The complete

system comprises a heterogeneous set of hardware and software environments requiring complex

interfaces among concurrently executing parts. Multiple Lisp processes communicate within a

Lisp interpreter, and multiple Unix processes (C programs) communicate through Unix sockets,

many across different workstations. Lisp and C routines call each other, and both interface with

the robot simulator, and a Unix workstation communicates via radio-modem with the physical

robot and its on-board 486 processor running MS-DOS. Furthermore, long periods of time,

ranging up to a few months, especially between the three studies, separated intervals of work on

the project over the course of a year. Group members worked less than half time on average

directly on the systems and architectural issues described here, devoting the rest of their time to

other aspects of the research or unrelated projects. In addition, as indicated below, we imported
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several software components: the BB1 system (designed and implemented by Barbara Hayes-Roth,

Micheal Hewett, Lee Brownston, and others) and the goal grouper (designed and implemented

by Scott Benson, a PhD student of Prof. Nils Nilsson) and the navigation components used in

studies 2 and 3 (designed and implemented by David Zhu, a post-doctoral associate of Prof.

Jean-Claude Latombe).

Thus, the present experiments provide a representative case study and demonstration of the

AIS DSSA's support for cooperative evolutionary software development.

4. Conclusions

Reusable software components have been a persistent, but elusive goal of the software

engineering community [4, 8, 30]. Despite progress on tools to organize, index, and select

reusable software components, few existing components are amenable to such manipulations.

Moreover re-engineering existing software components is expensive, while yielding only limited

actual reusability [36, 34, 35]. In response, we argue that: In order to realize the promise of

reusable software, we need to design highly reusable software right from the start.

The general DSSA approach aims to factor large classes of applications into reusable

reference architectures and components. Our AIS DSSA elaborates on this prescribed

factorization by imposing additional design constraints on the design of both the reference

architecture and components, with attendant increases in reusability. As a result, it supports

applications throughout the class of adaptive intelligent systems characterized in the taxonomy of

Figure 1. Besides the office robots applications discussed in this paper, our research group has

used the AIS architecture in two other sub-domains, intelligent monitoring systems and layout

design systems (see section 1). As these examples illustrate, the domain of adaptive intelligent

systems is larger than the typical domains targeted by DSSAs, which are closer in size to AIS

subdomains such as mobile office robots or semiconductor manufacturing. The important

question when evaluating the expected utility of designing a DSSA for a particular domain is to
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what extent the shared properties of instances of the domain demand common architectural

properties and common components of expertise.

Our AIS reference architecture’s use of the basic blackboard organization specifically

enables the integration and interoperation of diverse components, as it was originally designed to

do [7]. The additional characteristics of the BB1 dynamic control model provide the necessary

additional support for flexible run-time configuration and meta-control. It is particularly useful as

a foundation for AIS applications that must integrate diverse methods for performing multiple

loosely-coupled tasks in dynamic, uncertain environments and for complex systems whose

components evolve over time. The architecture reflects many person-years of design,

implementation, testing, debugging, and documentation. Thus, blackboards in general, and BB1

in particular represent cost-effective architectural foundations for large classes of applications.

Our three-way decomposition of expertise also extends opportunities for component reuse

throughout larger application domains. In each of the three sub-domains we studied, we have

been able to transfer task and method components among more or less diverse domains (e.g.,

office surveillance vs. delivery; protein structure vs. construction site layout; intensive care

versus several manufacturing domains). Most of the components we developed for these

applications are fully application-independent and reusable in other domains as well. The actual

savings realized through component reuse is component-specific. For example, many of the

components developed for the office robots domain are quite simple and easy to recreate;

however, others (e.g., the planner and navigation components) are moderate-sized programs

(2700 lines of Lisp code and 6000 lines of C code, respectively) that represent a substantial cost

saving in each reuse application. Components for the monitoring and layout design applications

are larger. However, since our interest has focused on architectural support for reuse and

reconfiguration, we have not invested heavily in developing "industrial strength" components,

which would provide a much higher savings on each reuse opportunity.

One of our architecture’s advantages, its support for run-time selection of components, also

carries its most significant cost. Run-time selection requires time. Other things being equal, a
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system configured with only the optimal components and a hardwired control regime will

outperform a system with multiple components from which to choose. To the extent that system

designers can determine the exact set of situations in which a system will find itself, they can try

to deduce the ideal configuration of system components and the optimal control regime. This is

the familiar tradeoff between design-time (human) effort and run-time (system) effort and, to

some degree, we can decide where to position a given development effort on the continuum.

However, as the complexity, generality, and evolutionary life-span of target applications

increase, so does the intrinsic requirement for run-time adaptation.

Of course, for both the reference architecture and the components, there is a marginal cost of

developing software that, in addition to meeting its primary specifications, is highly reusable.

This cost must be weighed against the benefits of subsequent reuse applications [3]. In our

experience, making the AIS reference architecture application-independent contributed only a

small part of its initial cost and may actually have simplified the tasks of designing and

implementing it. Similarly, making components reusable through our three-way decomposition

of expertise increases development cost only slightly, if at all.  Most important, by offering a

large domain of past and prospective reuse opportunities and substantial cost savings for each

reuse application, the AIS DSSA offers a substantial expected return on reuse investment.

In conclusion, our AIS DSSA captures a powerful, but costly software architecture and a

growing repertoire of components, making them available for reuse and reconfiguration

throughout a large application domain.
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