
 �

Chapter I
Multi-Vehicle Missions:
Architecture and Algorithms for

Distributed Online Planning

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Johan Baltié
Sophis Technology, France

Eric Bensana
ONERA, France

Patrick Fabiani
ONERA, France

Jean-Loup Farges
ONERA, France

Stéphane Millet
Dassault Aviation, France

Philippe Morignot
Axlog Ingénierie, France

Bruno Patin
Dassault Aviation, France

Gérald Petitjean
EURODECISION, France

Gauthier Pitois
Axlog Ingénierie, France

Jean-Clair Poncet
Sophis Technology, France

ABstrAct

This chapter deals with the issues associated with the autonomy of vehicle fleets, as well as some of the
dimensions provided by an artificial intelligence (AI) solution. This presentation is developed using the
example of a suppression of enemy air defense mission carried out by a group of unmanned combat air
vehicles (UCAV). The environment of the mission management system (MMS) includes the theatre of
operations, vehicle subsystems, and the MMS of other UCAV. An MMS architecture, organized around
a database including reactive and deliberative layers, is described in detail. The deliberative layer in-
cludes a distributed mission planner developed using constraint programming and an agent framework.
Experimental results demonstrate that the MMS is able, in a bounded time, to carry out missions, to
activate the contingent behaviors, to decide whether to plan or not. Some research directions remain
open in this application domain of AI.

�

Multi-Vehicle Missions

IntrOductIOn

The autonomy of vehicle fleets is a major artificial
intelligence (AI) challenge. Indeed, the behavior
of each agent associated to each vehicle of the fleet
has to be specified not only in terms of actions
on the environment but also in terms of flexible
group decision making. Three AI topics may be
useful to achieve this objective:

• Agent architectures can help in designing
the architecture of the software of each
vehicle

• A multi-agent approach can address the
problem of interactions between vehicles

• Automated planning can provide the basis
of vehicle intelligence

The purpose of this chapter is to present the
problems associated with the autonomy of vehicle
fleets together with some solutions via the example
of a suppression of enemy air defense (SEAD)
mission carried out by a group of unmanned
combat air vehicles (UCAV). The first section of
the chapter is devoted to the presentation of the
example problem.

The problems linked to architectural choices
are addressed in the second section. Indeed, au-
tonomous vehicles are a specific kind of agent:
they have to be very reactive in order to move at
high speed and they have to be intelligent in order
to aim at the right goal. Research conducted in the
AI and robotic domains give some architectural
answers to these challenges.

The capability of an agent to plan for itself
and for other agents is also a key component of
agent intelligence. In the third section, the plan-
ning problems arising in multi-vehicle manage-
ment and their distribution across the agents are
presented. The methods used for treating those
problems are detailed.

The fourth section gives some experimental
results obtained on the example problem. The

behavior of the planning module is illustrated and
the complete multi-vehicle mission management
system (MMS) is tested with a simulation tool.
Finally some conclusions are presented along with
directions for future research.

exAmple prOBlem

The example problem proposed in this chapter is
the development of a MMS for a group of UCAV.
The environment of the group includes a safe area
and a dangerous area, no flying zones, a command
and control (C2) center, the terrain, some threats,
and some targets. This environment is dynamic:
threats and targets may be discovered during
the course of the mission. The dynamic flight
constraints of the UCAV are considered. More-
over, some subsystems interact with the MMS.
The functions of those subsystems are location,
flight management, communication, self-defense,
sensor management, and weapon management.
A mission plan is defined before take-off, and
the aims of the MMS are to follow the mission
plan, to ensure safety, to ensure survivability,
and to ensure the success of the mission. Some
requirements are deduced from those aims: the
plan must be applied, disruptive events must be
detected and analyzed, reactive actions must be
carried out and, if needed, the mission plan must
be recomputed online.

The example problem is more complex than the
sum of every single agent mission management
problem. The set of actions that can be performed
by a group of UCAV is larger than the one for a
single UCAV. For instance, the group can split:
some UCAV fly to a convenient place to perform
detection, identification, and localization of targets
and other UCAV fly to another place to perform
the strike itself. After the action the group can
merge. Military pilots in SEAD missions apply
this type of action rules.

 �

Multi-Vehicle Missions

mission description

The considered mission is an air to ground mis-
sion which can combine SEAD, suppression of
targets (STRIKE), and battle damage assessment
(BDA) operations. Take-off, landing, and refuel-
ling are not considered. The considered UCAV is
a subsonic stealth aircraft with an internal weapon
bay. Figure 1 illustrates a typical mission.

The mission can be split in a sequence of
phases:

• Domestics in: transit to forward edge of
battle area (FEBA)

• FEBA crossing: cross the FEBA. This area
can be very protected.

• Tactics in: transit from FEBA to target
area

• Attack: localize, identify, acquire, destroy
the mission targets

• Tactics out: transit from target area to
FEBA

• FEBA crossing: cross the FEBA. This area
can be very protected.

• Domestics out: transit from FEBA to end
of mission point

All of these phases can be described in term
of constraints. For example, which equipment is
usable, or in which condition a piece of equipment
can be used to fire on a target.

ucAV system description

Figure 2 illustrates the UCAV system and the ex-
changes between the different system modules.

Legend:
SAM
Target
UCAVs

FEBA

Emergency
airport

Alternate
airport

Formation
Joining
area

Air to Air
Refuelling
Area Store

Download
Area

Radar
 Enemy CAP
UCAV formation

AWACS

Command and Control

Weapon
Employment

Area

Hostile
Area

MOB
(FOB)

Ingress Corridor

Egress Corridor

Figure 1. Illustration of a typical mission; the environment includes surface to air missiles (SAM), a
main operating base (MOB), and an airborne warning and control system (AWACS)

�

Multi-Vehicle Missions

• The navigation module is responsible for
applying the navigation plans. A navigation
plan is a sequence of waypoints.

• The localization module is responsible for
computing the current position of the UCAV
from different sources (global positioning
system, or GPS, inertial, numeric terrain).

• The sensor module is responsible for manag-
ing the onboard sensors (synthetic aperture
radar, or SAR, electro optical).

• The weapon module is responsible for man-
aging the onboard weapons.

• The communication module is responsible
for managing the datalinks:
 Intra formation datalink (short dis-

tance, bidirectional, stealth)
 Low bandwidth datalink (long dis-

tance, bidirectional)
 High bandwidth datalink (long dis-

tance, images upload)
• The self-defence function is responsible for

managing the following pieces of equip-
ment:

 Missile approach warner, in charge
of detecting incoming missiles

 Radar warning receiver, in charge of
detection and identifying ground to air
threats

 Active electronic counter-measure,
in charge of jamming ground to air
threats

• The tactical situation module is in charge of
elaborating tracks on ground to air threats
with data coming from internal Radar Warn-
ing Receiver or other aircraft.

• The MMS is in charge of managing the
overall mission at two levels: vehicle and
group levels. At vehicle level, it is responsible
for:
	 Elaborating the current vehicle mission

status and tactical situation with the
information pushed by all the other
modules,

 Executing the current mission plan,
 Executing emergency actions when

MMS

Navigation Communications

Tactical Situation

Sensors

Selfdefence

Weapons

Positionning

MMS

Navigation Communications

Tactical Situation

Sensors

Selfdefence

Weapons

Localisation

Status
Data

Commands

Figure 2. The UCAV system

 �

Multi-Vehicle Missions

needed (reaction to threats, for ex-
ample).

• At group level (all the UCAV participating
in the mission), it is responsible for:
	 Elaborating the group mission status

and tactical situation and
 Creating a new mission plan from the

old one, the current status, and tactical
situation when the old one is no longer
applicable.

ArchItecturAl chOIces

Existing architectures for autonomous vehicles
may be purely reactive or may have a deliberative
layer. Those architectures may integrate mission
management systems.

pure reactive Architectures

The idea beyond this kind of architecture is that
mobile agents do not need online problem solving
algorithms and can rely solely on modules quickly
processing signals and logical conditions. The
modules may then be organized in an undetermined
number of asynchronous layers, the lowest layer be-
ing in direct connection with sensors and actuators
and each layer being controlled and parameterized
by the next upper layer. Brooks (1986) has for-
malized a reactive architecture: the subsumption
architecture where each layer is generalized by the
next upper layer. The wiring of the interconnection
between modules is predefined and the actuation of
a module is either internal or made by the recep-
tion of a message from another module. Exchanges
between layers are performed using special kind
of generic functions: inhibitor and suppressor. An
inhibitor inhibits output messages and a suppressor
suppresses the usual input message and provides a
replacement.

A reactive architecture can be built using the
model that flexible planning and scheduling with
contingencies is performed on the ground and

that vehicle autonomy is ensured by a conditional
executive, a resource manager and a model-based
mode identification and reconfiguration system.
Washington, Golden, Bresina, Smith, Anderson, and
Smith (1999) derive this reactive vehicle architecture
from the Remote Agent (Muscettola, Nayak, Pell,
& Williams, 1998) reactive and deliberative archi-
tecture. The plan commands are sent to the vehicle
real time control system, with results coming back
via state monitors into the mode identification and
reconfiguration system. This system infers the state
of the system from the monitored information and
updates the state for the conditional executive. If
commands fail or schedule constraints are violated,
the conditional executive tries to recover using
contingency plans. Reactive architectures are not
able to support problem solving but react quickly
to events. They are proposed for planetary explora-
tion missions.

Another approach is based on formalisms close to
the decision trees: universal plan (Schoppers, 1995)
or teleo-reactive trees (Benson, 1995). The instan-
taneous behavior of the agent is defined through a
tree of tests. The tested variables may be given by
sensors or internal values. Each test leads to two
other tests (if-yes and if-not) and leaves of the tree
are quick atomic actions. The tree is permanently
tested from root to leaves by a looping procedure.
Modal logic can be integrated in this formalism in
order to take into account the temporal extent of
actions and differences between the agent’s expec-
tation and reality (Schoppers, 1995). Trees can also
modify themselves by learning (Benson, 1995). The
advantage of this approach is to allow a fluid behavior
of the vehicle. However, even if it is theoretically
possible, the integration of deliberative features in
this approach seems practically difficult.

reactive and deliberative
Architectures

Deliberative architectures are fully based on problem
solving and usually react slowly. They are not used
for vehicle mission management.

�

Multi-Vehicle Missions

Practical intelligence of a vehicle consists
in a mix of reactive and deliberative behaviors.
The architecture includes two layers: the reactive
layer that interacts with the environment using
sensors and actuators and the deliberative layer
that includes reasoning modules. For instance,
the Entropy Reduction Engine architecture of
Bresina and Drummond (1990) includes a reactor
that provides reactive behavior in an environ-
ment. In this architecture, the deliberative layer
provides plans with the help of two modules: the
projector and the reductor:

1. The projector explores possible futures and
provides advice about appropriate behaviors
to the reactor.

2. The reductor reasons about behavioral con-
straints and provides search control advice
to the projector.

Gat (1992) proposed a third layer that super-
vises the modules of the reactive and deliberative
layers. This third layer activates the modules,
receiving their termination messages. It has to
react quickly taking into account the reasons
of a module execution failure. This supervision
layer may be implemented in a flexible way as a
Petri net player playing Petri nets described in a
hierarchical way (Verfaille and Fabiani, 2000).
Application of that type of architecture has been
proposed for planetary exploration rovers.

One important requirement for architectures
having both reactive and deliberative layers, is
the independence of the two layers in terms of
execution of modules. Indeed, even with high
environmental pressure, the architecture must
avoid stopping the execution of a reactive module
to start a deliberative module. For this reason,
reactive and deliberative layers may each present
an independent supervision functionality (Hayes-
Roth, Pfleger, Lalanda, & Morignot, 1995). For
instance, an independent controller for each layer
(deliberative, reactive) dictates which behavior
(cognitive behavior at the cognitive layer, physi-

cal behavior at the physical layer) to activate now,
given information present on a common structure
of each layer. One of these cognitive behaviors may
be “planning,” in our case. One of these reactive
behaviors may be, “take an evasive maneuver,” in
our case. This architecture has been demonstrated
on a mobile robot performing secretarial tasks in
a laboratory.

Then comes the discussion: what is a plan?
Investigators have first considered a plan as a
simplified program (in the sense of a program
in a programming language), for example, a se-
quence of programming instructions. Executing
the plan means executing the instructions. That
is the view of a pure computer scientist. Other
authors have considered plans as a communica-
tion medium (Agre & Chapman, 1987): a plan
is considered as data in a formal language that
provides information to other agents about the
intentions (short term, long term) of the agent. For
other authors, plans are considered as intended
behaviors (Hayes-Roth et al., 1995) capturing the
idea that an action in a plan is not a simple one-
shot action but a more continuous and meaning-
ful activity of the agent named behavior. Hence,
the sequence of action descriptions in the plan
corresponds, when executed, to a sequence of
behaviors, not of actions.

We follow this latter approach, with the notable
difference that behaviors, in our architecture,
always unfold in the same order. Hence there is
no need for a declarative approach for expressing
(encoding) behaviors (at the reactive layer and at
the deliberative layer). In other words, the logical
unfolding of behaviors (at the reactive and at the
deliberative layers) is simply hard-wired through
a simple sequential graph.

An intermediate layer, between the reactive
and deliberative layers, is proposed by Alami,
Chatila, Fleury, Ghallab, and Ingrand (1998). In
the resulting architecture, the deliberative layer
includes a planning module and a supervision
module that activates one plan in function of a stack
of agent’s intentions. The reactive layer is reduced

 �

Multi-Vehicle Missions

to modules controlling sensors and actuators. The
intermediate layer is called the execution control
layer. It chooses and parameterizes the adequate
module of the reactive layer with respect to the
tasks of the plan given by the deliberative layer.
It also elaborates, from the information returned
by the reactive layer, execution reports. Finally,
it transmits the reports to the supervision module
of the decisional layer.

The Remote Agent architecture (Muscettola et
al., 1998) integrates not only a deliberative layer
and an execution control layer but also a model-
based mode identification and reconfiguration.
The deliberative layer includes a mission manager
that formulates short-term planning problems for
a planner and scheduler on the basis of a long-
range mission profile. The executive achieves
robustness in plan execution by exploiting the plan
flexibility, for example, by being able to choose
execution time within specified windows or be-
ing able to select different task decompositions
for a high-level activity. The mode identification
tracks the most likely vehicle states by identi-
fying states whose models are consistent with
sensed values and commands sent. The mode
reconfiguration uses the vehicle model to find a
command sequence that establishes or restores
desired functionality.

level of detail in the plan

Architectures with an advanced execution control
layer raise the issue of plan abstraction and con-
tingencies. Indeed, the more flexibility is given
to the execution control layer, the less precise is
the planned action and the more unpredictable are
its effects. The basic formalism for abstraction of
action is the Hierarchical Task Network (HTN).
This formalism states that elementary actions
are derived from abstract actions that are the
purpose of the plan. This decomposition is made
through non-elementary actions called methods.
A method includes an identifier, arguments and a
list of pairs (conditions–list of actions, elementary

action or method). Activating a method means to
choose a pair whose conditions are compatible
with the current state and to activate the actions
of its list. It is possible to specify if the actions
have to be activated in sequence or if the actions
may be activated in parallel. This formalism de-
composes the most abstract action in an “and/or”
tree. Bresina and Washington (2001) use such
decompositions in their Contingent Rover Lan-
guage to provide a flexible plan to a conditional
utility-based executive.

Architecture for the example
problem

The vehicle architecture for the example problem
is already defined. In that architecture a part of
the reactive layer is outside the scope of the mis-
sion management problem. However the mission
management system is subject to time pressure
and cannot include only a deliberative layer. The
design principles for the example problem are:

1. Online planning shall be activated only
when the current plan is invalidated by the
current situation.

2. The reactive layer shall not only execute the
plan but also handle emergency situations.

3. Sensor inaccuracy is managed through
planning of behavioral procedures for
inaccuracy reduction.

Figure 3 presents the mission management
system architecture for the example problem. It
includes reactive and deliberative layers. This
architecture is organized using an underlying
database that stores information about the ve-
hicle, the other vehicles, the mission, and the
environment.

The reactive layer includes the following
modules: “observe and compare,” “pre-empt,”
and “act.”

The “observe and compare” module receives
the messages from the platform, marshals them

�

Multi-Vehicle Missions

into structured data, updates the database infor-
mation, and performs tests about the short-term
situation. It tests the possible disruptive events
such as unexpected exposure to a threat, presence
in a No Fly Zone (NFZ), loss of communication,
and failure of other vehicle subsystems using
some simple threshold-based functions applied
on limited time horizon and geographical range.
It includes a function of inhibitor, in the sense
of Brooks (1986), of the messages in direction
to “pre-empt.”

The “pre-empt” module is activated once a
threshold has been passed over. According to the
nature and to the emergency level of this event, it
determines candidate contingent behaviors and
selects the one that has to be applied in the system
to secure aircraft situation as soon as possible.
This could necessitate to quickly check the overall
UCAV situation and, if necessary, to compute
some parameters to determine the contingent
behavior and activate it. Finally, “Preempt” de-
termines the sequence of unit actions generated
by the behavior. Four behaviors may be activated
by the module:

• The behavior for new radar threat detection
implements updates of the radar list and radar
locations, active electronic counter measure

under specified conditions, maneuver for
avoidance or information gathering under
other specified conditions.

• The behavior for approaching missile detec-
tion implements unconditional use of active
electronic counter measures, chaff and flare
decoy, and evasive maneuvers.

• The behavior for loss of communication
between neighboring vehicles consists in
commanding the altitude of the vehicles to
different predetermined flight levels in order
to ensure the absence of collision between
them. The secured altitude slots are attrib-
uted to each aircraft at plan generation time,
ensuring their uniqueness for each aircraft
of a formation.

• The behavior for NFZ violation avoidance is
implemented in two parts. First, a modifica-
tion of the current trajectory is computed,
attempting to avoid incoming NFZ, going
round it by the shortest way. If this fails or
if the situation evaluation reports that the
aircraft suddenly appears to be inside a
NFZ, the solution consists in a fast trajec-
tory computing that will attempt to exit the
NFZ by crossing the closest frontier point.

R
eactive level

D
eliberative level

On-line planing process

PlatformMessages Messages

Plan

Observe &
compare

Predict

Pre-empt Act

Prepare Format

Database

Figure 3. The mission management system architecture

 �

Multi-Vehicle Missions

All behaviors have a date parameter, a time-
out, and a homing waypoint parameter. They are
updated each time the “preempt” component is
activated. This update can be null according to
the current aircraft situation, meaning that the
system can return to nominal plan execution.
Otherwise, the contingency ends once its as-
sociated timeout has been passed out or when
homing point is reached. All behaviors, except
loss of communication, have a Boolean parameter
indicating whether the global path can be modi-
fied. Finally, the behavior for new radar threat
detection has an additional parameter indicating
the origin waypoint.

Four types of information represent the be-
haviors:

• The warning processing information in-
dicates what should be done in terms of
knowledge management.

• The system management information in-
dicates what should be done in terms of
auto-protection actions.

• The flight plan modification information
indicates what should be done in terms of
navigation actions.

• The end of contingency information indi-
cates conditions for terminating the behav-
ior.

The “act” module carries out the unit actions
of the plan or of the “pre-empt” module and deter-
mines whether an action is correctly performed or
not. Hence, the module analyzes the status of the
subsystems stored in the database. When actions
of the plan and from “pre-empt” are conflicting, it
always gives the priority to preemption actions in
order to ensure platform safety. This mechanism
corresponds to a suppressor function in the sense
of Brooks. Finally the module sends messages to
the platform subsystems.

The deliberative layer includes the follow-
ing modules: “predict,” “prepare,” “plan,” and
“format.”

The “predict” module assesses the feasibility of
the on going plan and decides whether to compute
a new plan or not. Probabilities of UCAV survival
and of target killing are updated and compared
to a threshold. The possibilities of fulfilling time
constraints at some waypoints and of having
enough fuel to finish the mission are checked. It
should be noted that the “predict” component faces
a dilemma. On the one hand, deciding to re plan
all the time leads the agent to an erratic behavior,
always starting the beginning of new unrelated
plans, and therefore not leading to any goal at all
(too often replanning). On the other hand, decid-
ing to plan too infrequently leads the agent to
follow unusable plans, since the behavior of the
agent does not adapt to what actually happens in
the environment (too infrequent replanning). The
solution we propose for this “predict” component
is a medium term on the previous spectrum, by
using variables representing states of the agent.
When the mean of these variables is above some
threshold, then the replanning decision is taken
(and replanning occurs). This solution is not
satisfactory in principle, since it does not solve
the problem of the continuity of the behavior of
the agent over successive replanning activities.
But at least it provides a practical and simple
(but not elegant) solution, even if these variables
and thresholds need careful tuning for a realistic
replanning frequency to be adopted. Moreover,
the occurrence of a replanning request while re-
planning has to be managed. This management is
performed using priorities on replanning reasons.
If the priority of the reason of the present replan-
ning request is lower than the one of the on going
replanning, the request is ignored. Otherwise, the
on going replanning activity is stopped and the
replanning is started with a context including the
present request.

The “prepare” module gathers and generates
data for the “plan” module. The data includes:

• Participating vehicles.
• Available resources for each vehicle.

�0

Multi-Vehicle Missions

• Environment including threats, targets, and
NFZ.

• A graph including possible paths for ac-
quisition, attack, and return to base. This
graph is built in two steps. An initial graph
is deduced from the initial mission plan
by associating mission waypoints to graph
nodes and transitions between these way-
points to graph edges. Nodes and edges are
tagged according to their strategic properties
for acquisition, shooting, and so forth. The
second step is done each time the component
is activated. It consists in the generation of
different alternative paths for each strategic
action, including Return To Base. These
paths are generated using a potential field
based algorithm in which threats and NFZ
are associated to repulsing potential while
targets and base airport are associated with
attractive potentials. Motion planning is
fully explained in the next section.

• Time intervals at waypoints.

The “format” module refines the macro ac-
tions of the plan into sequences of unit actions.
For instance the macro action “launch bomb 1
on target 101 at time t” is refined in the sequence
of unit actions: “select resource type bomb 1 at
time t-d” then “initialize selected resource with
target 101 features at time t-e” then “ask to C2
go/no go at time t-f” then “if C2 answer is go fire
bomb 1 at time t-g.”

The “plan” module directly receives some
messages and is also able to send directly other
messages. This feature of the architecture allows
multi-UCAV distributed planning.

The MMS is activated every 0.1 seconds. For
most of the cycles only three modules are activated:
“observe and compare,” “predict,” and “act.” For
those cycles, the result of the analysis of messages
from the platform by “observe and compare” and
“predict” indicates that no preemptive behavior
has to be activated and no new plan has to be

computed. The “act” module continues carrying
on actions of the current plan.

For cycles where “observe and compare”
indicates that a pre-emptive behavior has to be
activated, the “preempt” module is additionally
activated. This module may remain activated for
several consecutive cycles until the behavior is
finished. Meanwhile the “act” module applies the
actions issued from the behavior. For instance, if
the disruptive event is the detection of a missile
launch, the module remains activated until the
end of the escape maneuver.

For cycles during which “predict” indicates
that a new plan has to be computed, the “prepare”
module is additionally activated. In the same cycle,
the “plan” module is activated in the background.
Several cycles afterwards, the “plan” module
provides a plan and activates the “format” module
just for a single cycle.

Special attention is given to the way the
computation time constraints are taken into ac-
count: different priorities are assigned to the input
messages, only a bounded number of messages
are processed each cycle and long processing is
performed over several cycles or in a separate
thread. The conjunction of those techniques en-
sures that a computation time bound for a time
cycle of the mission management system can be
predetermined.

plAnnIng

specifying the mission and the
planning problem

A specific grammar can be used to specify the mis-
sion of a multi-vehicle system (Brumitt & Stentz,
1998). The basic elements of the grammar are the
vehicles, the goals, and the motions of combination
of vehicles towards combination of goals. Those
elements can be combined using “or,” “and,” and
“and then” operators. The specification given by

 ��

Multi-Vehicle Missions

the user is translated in an expression allowing
planning. The basic elements of this expression
can be treated as:

• A shortest path problem
• A traveling salesman problem
• A path selection problem
• A multiple traveling salesman problem

However most of the time missions have to
be specified through formats that are specific to
the application. For the example problem, the fol-
lowing information has to be given to the planner
each time a new plan is requested:

• The date for the plan to start, because
problems are not stationary. For instance,
the FEBA shall be crossed only in specific
time windows.

• The UCAV to be considered. Indeed the
vehicles are basic elements of mission speci-
fication. However additional information
must also be provided. For instance, the
UCAV predicted state in terms of geom-
etry and resources at the date for the plan
to start. Moreover, because a permanent
communication network cannot be estab-
lished and because enemies may destroy
the UCAV, three classes of vehicles are to
be distinguished: (i) the UCAV involved
in the communication cluster in which the
planning is carried on, (ii) the UCAV not
involved in the communication cluster but
presenting a plan assumption, and (iii) the
UCAV not involved in the communication
cluster and assumed out of order.

• The goals to be considered. Indeed goals are
basic elements of the mission specification.
Goals are described through action proto-
types for target destruction. A prototype
includes the resources to be used by the
UCAV at specified places in the space and at
specified times in order to have a specified
probability of destroying the target. Figure

4 gives an example of an action prototype as
a xml text. This prototype specifies that the
target 1168 is a SAM site at a given latitude,
longitude, and altitude. The target can be at-
tacked either by delivering one bomb of type
1 with a UCAV with global positioning sys-
tem capability or by delivering three bombs
of type 1 with one or several UCAV. In the
first case , the probability of destruction is
0.95. In the second case it is 0.80. Moreover
the attack can be conducted either through
node 1072 and edge 1069 with a heading of
270 degrees or through node 1074 and edge
1070 with a heading of 0 degrees.

• The navigation data including relevant char-
acteristics of the environment. This includes
a graph and the description of the airspace
parts threatened by the different threats.

motion planning

Planning for multi-vehicle missions obviously
includes motion planning for each vehicle of
the fleet. The result of this motion planning is
a sequence of “go to” actions to different points
in the space. Different requirements for the path
can be found in the literature (Allo, Guettier,
Legendre, Poncet, & Strady-Lecubin, 2002; Ku-
wata, 2003; Szczerba, Galkowski, Glickstein, &
Ternullo, 2000):

• The angle between two successive legs at
each point of the path must be below a given
value.

• The angle between two successive legs
at each point of the path must be feasible
through a sequence of three circle arcs that
do not conflict with forbidden area.

• The distance between two consecutive points
must be larger than a value that depends on
the distance to the origin and on the distance
to destination.

• The distance between two consecutive
points must be large enough not to have any

��

Multi-Vehicle Missions

interference from the sequence of circle arcs
at the upstream point with the sequence at
the downstream point.

• The length of the path must be below a given
value.

• The heading of the last leg is given.
• The total combustible consumption must be

lower than the combustible available at the
beginning of the plan.

Two kinds of approaches for motion planning
exist: the covering of the space by cells (Szczerba
et al., 2000) and the construction of a graph (Allo
et al., 2002; Fabiani et al., 2005; Kuwata, 2003).
If the space is covered by cells, the solution of
the problem can be provided by an A* algorithm.
For each cell a local cost and an optimal cost to
go under relaxing assumptions are computed.
The A* algorithm uses the optimal cost to go as
a heuristic function. If a graph is built, it can be
done either by the Voronoi method (Fabiani et
al., 2005) or by the visibility method (Kuwata,
2003). Then the path on the graph is found ei-
ther by a Dijkstra (1959) algorithm, a modified
Dijkstra algorithm (Kuwata, 2003), or constraint
programming (Allo et al., 2002; Strady-Lécubin
& Poncet, 2003).

For the example problem, the graph given to
the planning module is complemented by the vis-
ibility method in order to provide paths around
the threatened areas. Each node j of the graph
presents a set of upstream edges (Inj) and a set of
downstream edges (Outj). Then the motion-plan-
ning component of the problem is formulated
using constraint programming. Some variables
are associated to UCAV and nodes; the fact that
the UCAV i passes by the node j (Pi,j), the arrival

time of the vehicle at the node, the altitude, speed,
fuel, mass, logarithm of survival probability, and
the fuel spent for the heading change at the node.
Other variables are associated to vehicles and
edges; the fact that the UCAV i flies the edge k
(Ui,k), the flight time, altitude variation, fuel con-
sumption, logarithm of conditional survival prob-
ability, and exposure time to the different threats
of the UCAV on the edge. Constraints describe
navigation possibilities. They include:

• A vehicle mass definition constraint,
• Constraints ensuring consistency between

passing at a node and flying edges,
• Constraints modeling the feasibility of the

heading change at a node and its consequence
on the speed and consumption,

• Constraints associated to the initial state of
each vehicle,

• Constraints ensuring consistency between
the values of variables at the upstream node,
the downstream node, and on the edge when
a vehicle flies the edge, and

• Constraints associated to the terminal nodes
of the graph.

For instance, consistency between passing at node
and flying edges is given by:

If , ,,
j

j i k i j
k In

In U P
∈

≠ ∅ =∑ (1)

If , ,,
j

j i k i j
k Out

Out U P
∈

≠ ∅ =∑ (2)

If the heading change from edge k to edge l at
not j is not possible:

<target id="1168" type="SAM_SITE" lat="45.241111" lon="8.810983" alt="0.">
<mode bomb1="1" bomb2="0" pr="95" gps="1"></mode>
<mode bomb1="3" bomb2="0" pr="80" gps="0"></mode>
<node id="1072" type="weapon" axis="270.000000" edge="1069"></node>
<node id="1074" type="weapon" axis="0.000000" edge="1070"></node>

</target>

Figure 4. Action prototype

 ��

Multi-Vehicle Missions

Ui,k + Ui,l ≤ 1 (3)

Otherwise:

Ui,k + Ui,l = 2 ⇒ CSSC (4)

Where CSSC is a set of constraints on speed and
consumption of UCAV i at node j.
For the node jinit(i) where the UCAV i is at the
date the plan begins:

Pi,jinit(i)=1 (5)

For each edge k:

Ui,k = 1 ⇒ CSUD (6)

Where CSUD is a set of constraints between
upstream and downstream nodes of edge k on
arrival time, altitude, speed, fuel, logarithm of
survival probability involving flight time, alti-
tude variation, fuel consumption, logarithm of
conditional survival probability, and exposure
time on the edge k.

Finally the path ends in a node without down-
stream links:

,
/

1
j

i j
j Out

P
=∅

=∑ (7)

The constraint satisfaction problem derived
includes linear, nonlinear, disjunctive, and con-
ditional constraints. The variable domains are
finite.

consistent group motion

Multi-vehicle missions may also imply a consis-
tent group motion: vehicles must remain close
one to the other but must not collide. To take
into account this kind of requirement, flocking
has been adapted and implemented on fleets of
actual robots by Hayes and Dormiani-Tabatabaei

(2002). Moreover Olfati-Saber and Murray (2003)
studied the adaptation of flocking algorithms in
case of communication constraints and obstacle
avoidance. Usually, flocking is not used at the
deliberative layer but at the reactive layer. How-
ever, the use of a flocking criterion in a Dynamic
Programming successive approximation scheme
allows the computation of coordinated motion
for two unmanned vehicles (Corre, 2003). For
missions where vehicles move in an encumbered
environment, the absence of collision and dead-
lock is ensured through planning. In Alami,
Ingrand, and Qutub (1997), the edges of a naviga-
tion graph are resources to be shared among the
mobile robots. The planning is then performed
incrementally in a decentralized way: each time
a robot receives a new goal, it builds a new plan
compatible with the activities of its current plan
and with the resource usage of the activities of
the plans of the other robots. In other missions,
the absence of collision is not handled by plan-
ning but is treated locally in a reactive way, for
instance by stopping the robot with lower priority
(Brumitt & Stentz, 1998).

A different kind of consistent group motion can
be found with exploration missions: the vehicles
must share the area to be explored. In the work
of Walkers, Kudenko, and Strens (2004), agents
are in charge of mapping a two dimensional area.
Each agent builds heuristically a value function
for each cell of the space. The path is obtained
by selecting the neighboring cell with the best
value. Several ways of computing the value are
proposed. The computation of the value may take
into account, when the communication between
agents is possible, the path planned and the area
already explored by other agents.

For the example problem, consistent group
motion is not handled by the planner. The plan-
ner may produce a plan where some UCAV fly on
the same edge at the same time. In that case the
reactive layer gathers those UCAV in a formation
and specific flying rules are applied.

��

Multi-Vehicle Missions

performing tasks

In a group of vehicles, the vehicles may have dif-
ferent capabilities of action and observation. In
that context, one vehicle may perform an action
for another one and the exchange of information
between vehicles may be explicitly planned. Some
actions using resources of the sub-systems of the
vehicle are in the plan besides the “go to” actions.
Tavares and Campos (2004) give an example of
such a situation: two helicopters have to travel
a given path as quickly as possible but there is,
somewhere on the path, one threat that can be
perfectly observed and destroyed only by one of
them. The plan is obtained using a team Partially
Observed Makov Decision Process where the path
is divided in steps and each agent has, in addition
to original actions and observations, communica-
tion actions and observations. However, solving
the simple problem exactly, where the path is
already given, is not tractable and the heuristics
used are sometimes not optimal.

Multi-vehicle mission planning may also
include task selection and assignment. Several
approaches for task assignment exist:

• Using rules on the state of the vehicles such
as assigning the task to the nearest vehicle
with the capability to perform it (Beard,
McLain, Goodrich, & Anderson, 2002).

• Making requests to compute the cost of a
path to a task destination or of a visit of
several task locations for vehicles and using
the results of the requests for optimizing the
decision (Brumitt & Stentz, 1998).

• Computing for each vehicle the travel time
associated to permutations of combinations
of feasible, in terms of resources and tasks,
selecting a limited number of permutations
for each vehicle. Finally optimizing a cri-
terion based on time of achievement of the
last task, the permutation travel time and
the total waiting time. This optimization
selects one permutation per vehicle and set

the instants of task achievement (Kuwata,
2003). This approach is based on the use of
libraries of linear programming with mixed
variables.

Finally, vehicles assigned to the same task
may have to be synchronized. Kuwata (2003)
proposes to solve synchronization and assignment
in a single problem. Another solution consists in
generating, for each vehicle, a set of good paths to
the point it has to perform the task and then to find
among those sets the best feasible instant for task
achievement (Beard et al., 2002). The assignment
or synchronization is performed by computing,
for each vehicle, a set of initial paths and select-
ing one path in each set. Then the selected path
is refined in a last step by optimizing, taking into
account the given synchronization instants (Beard
et al., 2002; Kuwata, 2003).

The example problem involves different as-
pects: selection of goals, selection of an action
mode for each goal, assignment of vehicles and
their resources to each selected action mode, and
scheduling attacks. Constraint programming and
integer programming are powerful approaches for
integrating those different aspects. Indeed, this
approach is efficient even for planning problems
expressed in a propositional representation (van
Beek & Chen, 1999; Vossen, Ball, Lotem, & Nau,
1999). Moreover, the use of constraint program-
ming allows a formulation consistent with the one
for motion planning. For additional details about
the encoding of a planning problem as a constraint
programming formulation, see the chapter entitled
Extending Classical Planning for Time: Research
Trends in Optimal and Suboptimal Temporal Plan-
ning in this book. Variables indicating quantities of
different resources (bombs, missiles, and so forth)
of the UCAV when passing the node are associ-
ated to vehicles and nodes. For nodes j attached
to the attack of a target, additional variables are
the participation of the UCAV to the attack (Ii,j)
and the quantities of different resource k used by
the UCAV at the node (Qk,i,j). Finally variables are

 ��

Multi-Vehicle Missions

associated to goal achievement. For each target,
the variables are:

• The fact that the target o is attacked (Ao),
• The fact that it is attacked at a given node

(Ao,j),
• The fact that it is attacked at a given node

in a given mode (Ao,j,m),
• The attack time,
• The gross efficiency of the attack (Effo),
• The gross efficiency of the attack at a given

node (Effo,j),
• The logarithm of the efficiency discounted by

survival probability of participant UCAV.

Constraints describe conditions for goal
achievement. The constraints associated to goal
achievement include constraints associated to the
attack of the targets and constraints defining some
global criteria such as global efficiency (Eff) and
global survivability. An important aspect is the
link between the motion planning part of the model
and the goal achievement part of the model. This
link is ensured by constraints of the type:

Ii,j ≤ Pi,j (8)

∑≤
k

jikji QI ,,, (9)

Qk,i,j ≤ Kk,iIi,j (10)

mjomk
i

jik ARQ ,,,,, ≥∑ (11)

jo
m

mjo AA ,,, =∑ (12)

o
j

jo AA =∑ , (13)

Equations (8) and (9) indicate that precondi-
tions for an UCAV to participate to an attack
at a node are to pass by that node and to have
some resource to use at that node. Equation (10)
bounds the resources usage by zero if the UCAV
does not participate and by the available quantity,
Kk,i, otherwise. Equation (11) indicates that the

precondition for the group to attack a target in a
given mode is to have at least the resource amount
requested for that mode, Rk,m. Equations (12) and
(13) indicate that a single mode and a single node
are selected for the attack of the target. Similar
equations ensure the link between attack times
and passage times at points.

A simplified equation for efficiency of the
attack of target o at node j is:

∑=
m

mjomojo ApEff ,,,, (14)

where po,m is the probability of destruction of the
target o when attacked in mode m. This prob-
ability is directly taken from the action prototype.
Then the efficiency of the attack of target o is
given by:

∑=
j

joo EffEff , (15)

Finally the global efficiency is defined as the
sum of the probability of destruction of the dif-
ferent targets:

∑=
o

oEffEff (16)

The modeling of the example problem using
a constraint programming approach entails the
definition of a large number of variables. But the
graph of variables and constraints associated to
a multi-vehicle mission presents a star structure:
the variables associated to goal achievement are
connected by constraints to the variables associ-
ated to the different vehicles but there is no direct
constraint between the variables of two vehicles.
This structure allows the decomposition of the
initial problem into a problem associated to each
vehicle and a goal achievement problem. The
decomposition of the initial problem has the
advantage of permitting the use of the comput-
ing resources of all vehicles and it corresponds
to the approaches of Brumitt and Stentz (1998),

��

Multi-Vehicle Missions

Beard et al. (2002), and Kuwata (2003). Several
techniques are available to perform the distributed
search of a solution. Among those techniques, it is
possible to make the distinction between methods
that start by solving the goal achievement problem
and then making requests to motion planning
solvers (Brumitt & Stentz, 1998) and methods
that start by creating several proposals with the
motion planning solvers (Beard et al., 2002; Ku-
wata, 2003). For the example problem, it seems
that the first method would be blind starting the
search mainly for setting attack time variables
and performance evaluation variables. Thus the
problem is solved with a three step technique
where: (1) sets of solutions are searched for the
problems associated to each vehicle, (2) a coordi-
nation problem, including the goal achievement
problem and the selection of one solution per
set, is solved, and (3) the solution is refined for
each vehicle.

Important technical points are the assumptions
made at step 1 to compute feasible paths between
the points associated to goal achievement and the
assumptions made for the representation of the
different schedule on the same path with their
impact on fuel consumption and threat exposure.
It has been decided to compute feasible paths with
a simplified consumption model and to provide
the impact of the timing on other variables by
linear relations.

Implementation

Implementation of distributed planning algorithms
for multi-vehicle missions is often performed us-
ing custom software built without off-the-shelf
packages. However, Kuwata (2003) uses CPLEX
as a mixed variable linear programming engine
for solving the assignment problem.

For the example problem the implementation
relies on JADE (Bellifemine, Poggi, & Rimassa,
1999), a FIPA agent compliant framework. This
framework allows implementing the three steps

of the distributed planning algorithm as two be-
haviors of the planner agent. The first behavior
is activated by the “to prepare” module, sends a
request for proposals to the different UCAV, waits
for the reception of the proposals and solves the
coordination problem. The second behavior is
activated by a request for proposals. It computes
and sends the set of solutions, waits for the selected
solution, and refines it. The CHOCO (Laburthe,
2000) tree searching constraint solver is used
for enumerating the set of solutions, solving the
coordination problem and refining the selected so-
lution. For additional information about constraint
satisfaction techniques used by current constraint
solvers, see the chapter entitled Principles of
Constraint Processing in this book.

computation time constraints

The control of the time to find a plan may also
be an important implementation issue for some
multi-vehicle online mission planning. One ap-
proach to avoid performing long plan computation
on line is to provide a policy, computed off-line,
that for each possible state gives almost imme-
diately an action. In that case the performance is
grounded on the introduction of expert knowledge
or on dynamic programming or on reinforcement
learning (Harmon & Harmon, 1996). However,
the drawbacks of this approach are the limitation
of the amount of memory for policy storage, the
time taken off-line to compute the policy and the
difficulty of assessing the quality of the learned
policy.

Another approach for controlling the computa-
tion time is to plan with different levels of detail,
either in time or in state space. For instance the
receding horizon approach, used by Kuwata and
How (2004) for UAV, consists in computing at
each sample time a very detailed plan from the
end of the current sample time to the end of a
short-term horizon. The computation takes into
account a rough plan evaluation from the end of

 ��

Multi-Vehicle Missions

this horizon to the end of the planning problem.
Damiani, Verfaillie, and Charmeau (2004) pro-
pose for observation satellites an approach with
a planning horizon not defined a priori. Indeed,
breadth first tree search algorithms, like forward
dynamic programming, can be interrupted at
anytime and a rough evaluation can be added to
the criterion of the leaves of the last fully devel-
oped level. For a classical planning domain, the
propositions describing the state are classified in
different classes of abstraction (Knoblock, 1991).
The planning is performed starting with the most
abstract class of propositions and then treating
progressively less abstract classes. This approach
may reduce computation time, but leads some-
time to degraded performances (Smith & Peot,
1992). Zilberstein (1993) proposes algorithms
that progressively improve the solution and stud-
ies the problem of splitting a given computation
time in a sequence of such algorithms using their
performance profiles. Zilberstein and Russel
(1993) demonstrate the practical application of
computation time splitting on a sequence made
of an image analyzer feeding a path planner. At
each less abstract level, the terrain description
is refined by using a grid with twice number of
discrete values in each dimension.

For some missions with ground vehicles and
stationary environment it could be possible to stop
the vehicles while the plan is computed. For the
example problem this is not possible. The plan
has to be ready at the time at which it should
begin. The time spent by the solver to solve the
sub-problems is controlled by the selection of
variables to be assigned, by the selection of values
for those variables, and by interruption of the tree
search. For instance, an obvious solution of the
coordination problem is to attack no targets. The
selection of variables and values for the solver is
performed in order to find this obvious solution
first and then to improve it. Moreover before be-
ginning to plan, the remaining time is split and
assigned to each step of the solution.

experImentAl results

Experimental results are given in the context of
SEAD and STRIKE scenarios.

Behavior of the planning module

In order to assess the performance of the plan-
ning function, tests are conducted on a single Sun
Blade 1500 computer. The planning module is
requested to provide a plan for four UCAV with
four targets on a graph with 50 nodes and 57 edges.
The searches for a set of solutions by each vehicle
correspond to a constraint satisfaction problem
of about 300 variables and 500 constraints. This
step leads to the generation of 46 solutions for
the first UCAV after 1.0 seconds, 46 solutions for
the second UCAV after 1.6 seconds, 46 solutions
for the third UCAV after 1.7 seconds, and 138
solutions for the fourth UCAV in 2.4 seconds. It
is interesting to note that the number of solutions
found in the first step corresponds to the size of
the domains of four of the variables of the second
step. The second step of the method induces an
optimization problem with about 1500 variables
and 4200 constraints. The first constraint propa-
gation made by CHOCO reduces the number of
free variables to about 920. The following figure
illustrates the anytime behavior of the second
step of the planning method. A solution with no
target attacked is found in about 1.0 seconds. Then
as solution time increases, the efficiency of the
solution, as defined by equation (16), is improved
and more targets are attacked. Finally, the third
step conducts to optimization problems of about
300 variables and 200 constraints for each UCAV.
The refinement of the solution is given in 0.05
seconds for the first UCAV, 0.09 seconds for the
second UCAV, 0.14 seconds for the third UCAV
and 0.24 seconds for the fourth UCAV. Note that
the solution times for the first and third step of
the method are over-estimated because the tests
are conducted using a single computer. Finally, it
can be observed that if optimality is not required

��

Multi-Vehicle Missions

the computation time for the coordination step
can be reduced to few seconds.

full sImulAtIOn results

Those results demonstrate the capacity of a fleet of
vehicles integrating a distributed planning module
within a reactive and deliberative architecture.
The mission management system is able to carry
on nominal missions as specified, to activate the
contingent behaviors on disruptive events, to
decide whether or not to plan and, if necessary,
to plan and to run in a bounded time. Moreover,
datalink requirements for the functions of the
mission management system and performance
of distributed planning are assessed.

The MMS is evaluated on different scenarios,
starting from a very simple situation, one aircraft,
one target, and moving on to more complex situ-
ations with multiple aircraft, threats, and targets.
The following figure illustrates the nominal sim-
plest scenario. The white line is the navigation of
the aircraft. The red area is the FEBA, the green
ones no-fly-zones, and the yellow one is a threat
detection range. The MMS is able to execute this
mission correctly and in time.

On this scenario, events are injected:

• Discovery of a new threat on the path
of the UCAV: The reaction of the UCAV
is first a modification of the flight path,
induced by the reactive layer, in order to
localize the threat. Then the deliberative
layer plans online the mission in order to
respect its timings. The new plan is applied
and executed successfully. It is correct with
respect to mission goals.

• C2 sends new threat data when a jammer
is available: The reaction of the UCAV is no
reaction at all as it considers it will be able to
cross it using its jammer for self-defense.

• C2 sends new threat data when a jam-
mer isn’t available: The reaction of the
UCAV is replanning in order to maximize
survivability. The new plan is applied and
executed successfully. It is correct with re-
spect to mission goals. The new flight path
goes around the new threat.

• C2 sends data about two new threats while
a jammer is available: The reaction of the
UCAV is replanning in order to maximize
survivability. The new plan is applied and
executed successfully. It is correct with
respect to mission goals.

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100
Time (s)

E
ff

ic
ie

nc
y

no attack
1 target

2 targets

3 targets

4 targets

Figure 5. Performance profile for the second step
of the planning algorithm. The efficiency is the
sum of the destruction probabilities, expressed in
%, of the targets attacked.

Figure 6. The nominal simplest scenario

 ��

Multi-Vehicle Missions

During a test with two aircraft, the nominal
scenario is executed correctly and in time. Events
are also injected in this scenario.

• Loss of a sensor on the UCAV responsible
for target acquisition: The reaction of the
group is mission replanning, the acquisi-
tion task is reallocated to the other UCAV.
The new plan is applied and executed cor-
rectly.

• C2 sends new threat data when a jammer
is available: The reaction of the group is
no reaction at all as it considers it will be
able to go through it using its jammer for
self-defense.

• C2 sends new threat data when a jam-
mer isn’t available: The reaction of the
group is replanning in order to maximize
survivability. The new plan is applied and
executed successfully. It is correct with re-
spect to mission goals. The new flight path
goes around the new threat.

• C2 sends new mission target: the reaction
of the group is replanning in order to be
able to treat all mission targets. The new
plan is applied and executed successfully.
It is correct with respect to the new mis-
sion goals. Each UCAV is responsible for a
target.

The conjunction of those experimental results
demonstrates the feasibility of the proposed mis-
sion management system.

cOnclusIOn

The proposed architecture and distributed plan-
ning method for multi-vehicle missions contrib-
ute to the increase of vehicle intelligence and
autonomy. Indeed, with the integration of online
planning, disruptive events in absence of human
intervention do not lead necessarily to aborting
the mission. However, it is important to note that

the architecture proposed for the example problem
addresses a specific class of multi-vehicle mis-
sions. For this class the plan exists at the begin-
ning of the mission and provides actions up to the
end of the mission. In a context where there is a
large uncertainty about the ending conditions of
the mission or where there are systematically a
large difference between the situation expected
at planning time and the actual situation, other
architectures based on a more systematic activa-
tion of the planning module are more suited.

Some research directions remain for this ap-
plication domain of AI:

• Study of the link between the geometry and
the actions.

• Study of the method for taking into account
uncertainty about the state of the vehicles
and the environment as distance from cur-
rent date increases. Indeed, in the real world
sensing is not perfect and actions may have
uncertain outcomes not only in terms of
rewards, as considered in the example, but
also in terms of future state. The solution
provided through the architecture proposed
for the example is to compute a plan for the

Figure 7. Illustration of change of trajectory
resulting from a new plan

New
Threat

Original path

New path

FLOT

FRIEND

FOE

New
segments

Waypoint of
application

Position
when new
threat
detected

�0

Multi-Vehicle Missions

current context using a deterministic model
and to recompute it when the context changes
significantly from the initial hypothesis. A
more proactive solution could be obtained
by using for instance probabilistic planning
as proposed by Teichteil-Königsbuch and
Fabiani (2006) for the mission of a search
and rescue rotorcraft. The extension of this
approach to multi-vehicle missions is a very
promising research direction.

• Study of the efficiency of other distributed
methods.

• Study of mixed initiative planning for fleets
with manned and unmanned vehicles.

• Study of the sustainability of mission consis-
tency despite the ability to compute several
new plans during the mission.

AcknOwledgment

The French “Délégation générale de l’armement,”
a part of the ministry of defense, has funded
this work from 2003 to 2006 in the scope of the
ARTEMIS project, thanks to this institution. The
authors acknowledge the ARTEMIS partners
for their contribution, thanks to Jean-Francois
Gabard and Catherine Tessier. Finally, the authors
thank Richard Washington for correcting many
English mistakes.

references

Agre, P.E., & Chapman, D. (1987). Pengi: An
implementation of a theory of activity. In Pro-
ceedings of the Sixth National Conference on
Artificial intelligence (pp. 268-272).

Alami, R., Chatila, R., Fleury, S., Ghallab, M., &
Ingrand, F. (1998). An architecture for autonomy.
International Journal of Robotic Research, 17(4),
315-337.

Alami, R., Ingrand, F., & Qutub, S. (1997). Plan-
ning coordination and execution in multirobots
environement. In Proceedings of the 8th Inter-
national Conference on Advanced Robotics (pp.
525-530).

Allo, B., Guettier, C., Legendre, V., Poncet, J.C.,
& Strady-Lecubin, N. (2002). Constraint model-
based planning and scheduling with multiple
resources and complex collaboration schema. In
Proceedings of the 6th International Conference
on Artificial intelligence Planning and Schedul-
ing (pp. 284-293).

Beard, R.W., McLain, T.W., Goodrich, M.A., &
Anderson, E.P. (2002). Coordinated target assign-
ment and intercept for unmanned air vehicles.
Institute of Electrical and Electronics Engineers
Transactions on Robotics and Automation, 18(6),
911-922.

Bellifemine, F., Poggi, A., & Rimassa, G. (1999).
JADE–A FIPA-compliant agent framework. In
Proceedings of the Fourth International Con-
ference on the Practical Application of Intel-
ligent Agents and Multi-Agent Technology (pp.
97-108).

Benson, S.S. (1995). Learning action models for
reactive autonomous agents. Stanford: Stanford
University.

Bresina, J.L., & Drummond, M. (1990). Integrat-
ing planning and reaction. A preliminary report.
In Proceedings of the American Association of
Artificial intelligence Spring Symposium on Plan-
ning in Uncertain, Unpredictable or Changing
Environments (pp. 24-28).

Bresina, J.L., & Washington, R. (2001). Robust-
ness via run-time adaptation of contingent plans.
In Proceedings of the American Association of
Artificial intelligence Spring Symposium on Ro-
bust Autonomy (pp. 24-30).

Brooks, R. (1986). A robust layered control sys-
tem for a mobile robot. Institute of Electrical and

 ��

Multi-Vehicle Missions

Electronics Engineers Journal of Robotics and
Automation, 2(1), 14-23.

Brumitt, B.L., & Stentz, A. (1998). GRAMMPS:
A generalized mission planner for multiple mobile
robots in unstructured environements. In Proceed-
ings of the Institute of Electrical and Electronics
Engineers International Conference on Robotics
and Automation (vol. 3, pp. 2396-2401).

Corre, J. (2003). Planification distribuée sous
contrainte de communication. Master of Science
dissertation, ESIGELEC, UFR des sciences de
Rouen, Rouen, France.

Damiani, S., Verfaillie, G., & Charmeau, M.C.
(2004). An anytime planning approach for the
management of an Earth watching satellite. In
4th International Workshop on Planning and
Scheduling for Space (pp. 54-63). Darmstadt,
Germany.

Dijkstra, E.W. (1959). A note on two problems in
connection with graphs. Numerische Mathematik,
1, 269-271.

Fabiani, P., Smith, P., Schulte, A., Ertl, C., Peeling,
E., Lock, Z., et al. (2004). Overview of candidate
methods for the «autonomy for UAVs » design
challenge problem. Group for Aeronautical
Research and Technology in EURope, Flight
Mechanics Action Group 14 Report.

Gat, E. (1992). Integrating planning and reacting
in a heterogeneous asynchronous architecture for
controlling real-world mobile robots. In Proceed-
ings of the National Conference on Artificial
intelligence (pp. 809-815).

Harmon, M.E., & Harmon, S.S. (1996). Reinforce-
ment learning: A tutorial. Retrieved on August
14, 2007, from http://iridia.ulb.ac.be/~fvandenb/
qlearning/rltutorial.pdf

Hayes, A.T., & Dormiani-Tabatabaei, P. (2002).
Self-organized flocking with agent failure: Off-
line optimization and demonstration with real
robots. In Proceedings of the Institute of Electrical

and Electronics Engineers International Confer-
ence on Robotics and Automation (p. 4).

Hayes-Roth, B. (1993). An architecture for adap-
tive intelligent systems. Stanford University:
Knowledge Systems Laboratory.

Hayes-Roth, B., Pfleger, K., Lalanda, P., &
Morignot, P. (1995). A domain-specific software
architecture for adaptive intelligent systems.
Institute of Electrical and Electronics Engineers
Transactions on Software Engineering, 21(4),
288-301.

Knoblock, C.A. (1991). Automatically generation
abstractions for problem solving. Unpublished
doctoral dissertation, Carnegie Mellon University,
School of Computer Science.

Kuwata, Y. (2003). Real-time trajectory design
for unmanned aerial vehicles using receding
horizon control. Master of Science dissertation,
Massachusetts Institute of Technology.

Kuwata, Y., & How, J.P. (2004). Three dimen-
tional receding horizon control for UAVs. Paper
presented at the American Institute of Aeronau-
tics and Astronautics Guidance, Navigation, and
Control Conference and Exhibit.

Laburthe, F. (2000). CHOCO: Implementing a CP
kernel. In Proceedings of the Workshop on Tech-
niques for Implementing Constraint Programming
Systems,Singapour (pp. 71-85).

Muscettola, N., Nayak, P.P., Pell, B., & Williams,
B.C. (1998). Remote agent: To boldly go where no
AI system has gone before. Artificial intelligence,
103(1/2), 5-47.

Olfati-Saber, R., & Murray, R.M. (2003). Flocking
with obstacle avoidance: Cooperation with limited
information in mobile networks. In Proceedings
of the 42nd Institute of Electrical and Electronics
Engineers Conference on Decision and Control
(pp. 2022-2028). Retrieved on August 14, 2007,
from http://www.cds.caltech.edu/~olfati/papers/
cdc03/cdc03b_ros_rmm.pdf

��

Multi-Vehicle Missions

Schoppers, M. (1995). The use of dynamics in
an intelligent controller for a space faring rescue
robot. Artificial intelligence, 73(1/2), 175-230.

Smith, D.E., & Peot, M.A. (1992). A critical look
at Knoblock’s hierarchy mechanism. In 1st Inter-
national Conference on Artificial intelligence
Planning Systems (pp. 307-308).

Strady-Lécubin, N., & Poncet, J.C. (2003). Mis-
sion management system high level architecture,
report 4.3. MISURE/TR/4-4.3/AX/01, EUCLID
RTP 15.5.

Szczerba, R.J., Galkowski, P., Glickstein, I.S., &
Ternullo, N. (2000). Robust algorithm for real-
time route planning. Institute of Electrical and
Electronics Engineers Transactions on Aerospace
and Electronics Systems, 36(3), 869-878.

Tavares, A.I., & Campos, M.F.M. (2004). Bal-
ancing coordination and synchronization cost in
cooperative situated multi-agent systems with
imperfect communication. In Proceedings of
the 16th European Conference on Artificial intel-
ligence (pp. 68-73).

Teichteil-Königsbuch, F., & Fabiani, P. (2006).
Autonomous search and rescue rotorcraft mis-
sion stochastic planning with generic DBNs. In
M. Bramer (Ed.), International federation for
information processing (p. 217), Artificial intel-
ligence in theory and practice (pp. 483-492).
Boston, MA: Springer.

van Beek, P., & Chen, X. (1999). CPlan: A con-
straint programming approach to planning. In

Proceedings of American Association for Artificial
intelligence (pp. 585-590).

Verfaillie, G., & Fabiani P. (2000). Planification
dans l’incertain, planification en ligne. Presenta-
tion at Rencontres Nationales des Jeunes Cher-
cheurs en Intelligence Artificielle.

Vossen, T., Ball, M., Lotem, A., & Nau, D. (1999).
On the use of integer programming models in AI
planning. In Proceedings of the 16th International
Joint Conference on Artificial intelligence (pp.
304-309).

Walkers, T., Kudenko, D., & Strens, M. (2004).
Algorithms for distributed exploration. In Pro-
ceedings of the 16th European Conference on
Artificial intelligence (pp. 84-88).

Washington, R., Golden, K., Bresina, J., Smith,
D.E., Anderson, C., & Smith, T. (1999). Autono-
mous rovers for Mars exploration. In Proceed-
ings of the Institute of Electrical and Electronics
Engineers Aerospace Conference (Vol. 1, pp.
237-251).

Zilberstein, S. (1993). Operational rationality
through compilation of anytime algorithms. Un-
published doctoral dissertation, Computer Science
Division, University of California at Berkeley.

Zilberstein, S., & Russel, S.J. (1993). Anytime
sensing, planning and action: A practical model for
robot control. In Proceedings of the 13th Interna-
tional Joint Conference on Artificial intelligence,
Chambery, France (pp. 1402-1407).

