
Artificial Intelligence (A.I.) is a term which has been coined in the late 50s by a group 
of young and enthusiastic researchers. Since then, many other researchers kept the 
flame intact and have added their name to the hall of fame.

A.I. Planning  has been proposed in 1971 by Richard Fikes and Nils Nilsson. After
decades of exploratory systems, the first conference on this scientific domain emerged
in the USA in 1992: AIPS for A.I. Planning Systems. A little bit later emerged the EWPS 
forum, the European Workshop on Planning Systems, which became the European
Conference on Planning (ECP). In the early 2000, both conferences merged under the 
term ICAPS, for International Conference on Automated Planning and Scheduling, 
which takes place alternately on both sides of the Atlantic ocean.

Constraint Programming, another area of A.I., has been proposed in 1976 by Jean-
Louis Laurière in his Doctorat d’Etat (now HdR). Although its exact birth date is
debated, his ideas led to forums now known as CP, for Constraint Programming and to 
the Constraints journal.

I hope that the reader will find in the following pages a smooth and soft introduction 
to these two domains, which are taught in 2019 at B.S. level in many universities
worldwide.

P. Morignot

Preface
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« Given possible generic actions,

an initial state and goals,

find a sequence of instantiated actions,

which provably leads the initial state to a (final) state

containing the goals. »

• « Action planning » / « plan synthesis » / « generation of action plan » : 
activity of constructing a plan.

• « Planner » / « task planner » / « action planner » : computer program 
which solves this problem.

– Different from « path planner » in Robotics.
P. Morignot
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An action planner

Planner

Initial state

Goal(s)

Generic description

of each action

Action plan
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Difficulty

• Crane  domain:

– 1 crane, a locations, b trucks, c container stacks, d containers.

• If a = 5, b = 3, c = 3, d = 100, then ~ 10277 states.

• Classical planning is NP.

• All the states cannot be enumerated.
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Assumptions

• A1 : the agent is the sole cause of change in the 
environment.

– No other agent, artificial or human.

• A2 : the environment is totaly observable, the 
agent perfectly knows it.

– The agent does not reason (e.g., plan) on things it
does not know.

• A3 : the environment is static.

– Even if the environment can have behavior laws, it
does not spontaneously move.

A.I. Planning 8



P. Morignot

Planning Domain Definition

Language (PDDL)
• Representation language which defines:

– a domain: operators

– a problem: state and goals.

• An operator is composed of:
– Pre-conditions: terms which must hold for the action to execute.

– Effects / post-conditions: terms which the execution of the action 
changes when compared to the incoming state (ADD-LIST / DELETE-
LIST).

• A post-condition can be positive or negative.

• A term can be sometimes true and sometimes false, depending on 
the time at which it is considered in the plan.

– Connector « not ». Ex. : (not (ON MOUSE PAD))

– « Fluent » (litteral). Ex. : (ON MOUSE PAD)
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PDDL: Example of domain

The blocks world
• Operator :

• What about the table ? And the arm ? What if several arms ? What if blocks have colors ? Or 

nicks ? Or multiple dimensions ? Conditionnals ? Universal quantification ?

• Qualification problem ; ramification problem.

(:action puton

:parameters (?b ?u ?t - block)

:precondition (and (clear ?b)

(on ?b ?u))

(clear ?t))

:effect (and (not (on ?b ?u)) (clear ?u)

(on ?b ?t) (not (clear ?t))))

?u

?b

?t ?u

?b

?t

puton ?b ?u ?t

(clear ?b)

(on ?b ?u)

(clear ?t)

(not (on ?b ?u))

(clear ?u)

(on ?b ?t)

(not (clear ?t))

puton

… … … …
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Planning Domain Definition

Language (PDDL)

•The frame problem: when executing an 

operator, what is not explicitly changed is

considered unchanged.

•Closed world assumption: in a state, a term

not explicitly mentionned is considered to be

false.

– As opposed to the open world assumption

(ontologies) : unknown.
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PDDL: Example of problem

(define (problem blocks-24-1)

(:domain blocks)

(:objects X W V U T S R Q P O N M L K J I H G F E D C A B)

(:init

(CLEAR K) (CLEAR I) (ONTABLE C) (ONTABLE O)

(ON K F) (ON F T) (ON T B) (ON B G) (ON G R)

(ON R M) (ON M E) (ON E J) (ON J V) (ON V N)

(ON N U) (ON U H) (ON H C) (ON I A) (ON A P)

(ON P Q) (ON Q D) (ON D W) (ON W X) (ON X S) 

(ON S L) (ON L O) (HANDEMPTY))

(:goal (and

(ON L C) (ON C P) (ON P Q) (ON Q M) (ON M B)

(ON B G) (ON G F) (ON F K) (ON K E) (ON E R)

(ON R A) (ON A W) (ON W T) (ON T N) (ON N J)

(ON J U) (ON U S) (ON S D) (ON D H) (ON H V)

(ON V O) (ON O I) (ON I X))))
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The anomaly of Gerald Jay 

Sussman (1/16)

A B

C

A

B

C

?

puton ?b ?u ?t

(clear ?b)

(on ?b ?u)

(clear ?t)

(not (on ?b ?u))

(=> (<> ?u table)

(clear ?u))

(on ?b ?t)

(=> (<> ?t table)

(not (clear ?t)))

with:
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The anomaly of Gerald Jay 

Sussman (2/16)

A B

C

A

B

C

(on A B)

(on B C)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final
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The anomaly of Gerald Jay 

Sussman (2/16)

(on A B)

(on B C)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final
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The anomaly of Gerald Jay 

Sussman (3/16)

(on A B)

(on B C)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final
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The anomaly of Gerald Jay 

Sussman (4/16)
puton A ?u B

(clear A)

(on A ?u)

(clear B)

(not (on A ?u))

(clear ?u)

(on A B)

(not (clear B))

puton B ?u C

(clear B)

(on B ?u)

(clear C)

(not (on B ?u))

(clear ?u)

(on B C)

(not (clear C))

(on A B)

(on B C)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

A.I. Planning 17



P. Morignot

The anomaly of Gerald Jay 

Sussman (5/16)
puton A ?u B

(clear A)

(on A ?u)

(clear B)

(not (on A ?u))

(clear ?u)

(on A B)

(not (clear B))

puton B ?u C

(clear B)

(on B ?u)

(clear C)

(not (on B ?u))

(clear ?u)

(on B C)

(not (clear C))

(on A B)

(on B C)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final
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The anomaly of Gerald Jay 

Sussman (6/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)
(not (on B ?u))

(clear ?u)

(on B C)

(not (clear C))

puton A ?u B

(clear A)

(on A ?u)

(clear B)

puton B ?u C

(clear B)

(on B ?u)

(clear C)

(not (on A ?u))

(clear ?u)

(on A B)

(not (clear B))
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The anomaly of Gerald Jay 

Sussman (7/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)
(not (on B ?u))

(clear ?u)

(on B C)

(not (clear C))

puton A ?u B

(clear A)

(on A ?u)

(clear B)

puton B ?u C

(clear B)

(on B ?u)

(clear C)

(not (on A ?u))

(clear ?u)

(on A B)

(not (clear B))
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The anomaly of Gerald Jay 

Sussman (8/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)
(not (on B ta.))

(clear ta.)

(on B C)

(not (clear C))

puton A table B

(clear A)

(on A ta.)

(clear B)

puton B table C

(clear B)

(on B ta.)

(clear C)

(not (on A ta.))

(clear ta.)

(on A B)

(not (clear B))
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The anomaly of Gerald Jay 

Sussman (9/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)
(not (on B ta.))

(on B C)

(not (clear C))

puton A table B

(clear A)

(on A ta.)

(clear B)

puton B table C

(clear B)

(on B ta.)

(clear C)

(not (on A ta.))

(on A B)

(not (clear B))

A.I. Planning 22



P. Morignot

The anomaly of Gerald Jay 

Sussman (10/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)

(not (on B ta.))

(on B C)

(not (clear C))

puton A table B

(clear A)

(on A ta.)

(clear B)

puton B table C

(clear B)

(on B ta.)

(clear C)

(not (on A ta.))

(on A B)

(not (clear B))

(not (on ?b A))

(clear A)

(on ?b ?t)

(not (clear ?t))

puton ?b A ?t

(clear ?b)

(on ?b A)

(clear ?t)
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The anomaly of Gerald Jay 

Sussman (11/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)

(not (on B ta.))

(on B C)

(not (clear C))

puton A table B

(clear A)

(on A ta.)

(clear B)

puton B table C

(clear B)

(on B ta.)

(clear C)

(not (on A ta.))

(on A B)

(not (clear B))

(not (on ?b A))

(clear A)

(on ?b ?t)

(not (clear ?t))

puton ?b A ?t

(clear ?b)

(on ?b A)

(clear ?t)
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The anomaly of Gerald Jay 

Sussman (12/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)

(not (on B ta.))

(on B C)

(not (clear C))

puton A table B

(clear A)

(on A ta.)

(clear B)

puton B table C

(clear B)

(on B ta.)

(clear C)

(not (on A ta.))

(on A B)

(not (clear B))

(not (on C A))

(clear A)

(on C ?t)

(not (clear ?t))

puton C A ?t

(clear C)

(on C A)

(clear ?t)
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The anomaly de Gerald Jay 

Sussman (13/16)

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

Initial Final

(on A B)

(on B C)

(not (on B ta.))

(on B C)

(not (clear C))

puton A table B

(clear A)

(on A ta.)

(clear B)

puton B table C

(clear B)

(on B ta.)

(clear C)

(not (on A ta.))

(on A B)

(not (clear B))

(not (on C A))

(clear A)

(on C ?t)

(not (clear ?t))

puton C A ?t

(clear C)

(on C A)

(clear ?t)
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(not (on B ta.))

(on B C)

(not (clear C))

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

The anomaly of Gerald Jay 

Sussman (14/16)

Initial puton A table B

(clear A)

(on A ta.)

(clear B)

(not (on A ta.))

(on A B)

(not (clear B))

(clear B)

(on B ta.)

(clear C)

Final

(on A B)

(on B C)

puton C A ?t

(clear C)

(on C A)

(clear ?t)

(not (on C A))

(clear A)

(on C ?t)

(not (clear ?t))

puton B table C
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(not (on B ta.))

(on B C)

(not (clear C))

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

The anomaly of Gerald Jay 

Sussman (15/16)

Initial puton A table B

(clear A)

(on A ta.)

(clear B)

(not (on A ta.))

(on A B)

(not (clear B))

(clear B)

(on B ta.)

(clear C)

Final

(on A B)

(on B C)

puton C A table

(clear C)

(on C A)

(clear ta.)

(not (on C A))

(clear A)

(on C ta.)

(not (clear ta.))

puton B table C
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(not (on B ta.))

(on B C)

(not (clear C))

(clear C)

(on C A)

(on A ta.)

(clear B)

(on B ta.)

(clear ta.)

The anomaly of Gerald Jay 

Sussman (16/16)

Initial puton A table B

(clear A)

(on A ta.)

(clear B)

(not (on A ta.))

(on A B)

(not (clear B))

(clear B)

(on B ta.)

(clear C)

Final

(on A B)

(on B C)

puton C A table

(clear C)

(on C A)

(clear ta.)

(not (on C A))

(clear A)

(on C ta.)

puton B table C
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The anomaly of Gerald Jay 

Sussman : solution

A B

C

A BC

A

B

C

A

B

C

(1) (2)

(3) (4)
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Planners …

• Planners using forward search in a state space (Jorg Hoffman, 

Hector Geffner).

• Planners using backward search in a state space (Malte Helmert).

• Planners using (forward) search in a plan space (Anthony Barrett).

• Planners using evolutionnary algorithms (Marc Schoenauer)

• Planners using temporal logic (Patrick Doherty).

• Planners using constraint programming (Vincent Vidal).

• Planners using SAT solvers (Henry Kautz & Bart Selman, Jussi

Rintanen).

• Planner using mixed integer programming (Dana Nau).

• Planner using hierarchical task networks (Dana Nau).
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Hierarchical task networks
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Applications

• Advise a worker to disassemble a car engine (NOAH, 
Earl Sacerdoti 1974)

• Organize the logistics of the military invasion of Iraq 
during the first Gulf War (SIPE, David Wilkins, 1980).

• Reactivate the electronics components of a spatial 
probe cruising around Jupiter (2000).

• Debug a xerox machine.

• Determine the actions of characters in a video game
(Eric Jacopin, 2008).

• Interactive story telling (Marc Cavazza, 2010).
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Online planning: Difficulty

One dimension

of the problem
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Conclusion

• Action planning consists of finding a sequence of 
instantiated actions (a plan of operators) which provably
leads an initial state to a (final) state containing predefined
goals.
– Difficult because interaction among actions and combinatorial

explosion.

• Operators are expressed in the Planning Domain Definition
Language (PDDL) and are composed of pre-conditions and 
post-conditions.

• Several approaches to implement an action planner.

• Planning while executing is online planning: a fast reaction
time is required whereas action planning is a combinatorial
problem. Cognitive architectures as an approach for that.
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General Concepts

• Constraint Programming is a paradigm for solving
combinatorial problems.

• Other approaches:

– Mixed Integer Programming

– Evolutionary algorithms

– Search algorithms in a state space (e.g., blind search, 
heuristic search such as A*).

– Simulated annealing

– Taboo algorithm

– …



General Concepts

• A combinatorial problem is a problem …

– … which can be modelled as entities …

– … maintaining relations …

– … and in which a solution must be found:

the solution to the problem.

• There can be several solutions.

• Finding one

• Finding the best one



General Concepts

• Example of a combinatorial problem: the 

sudoku game.



General Concepts

• Example of a combinatorial problem: the N-

queen problem (here, N = 8).



General Concepts

• Example of combinatorial problem: 
cryptarithmetics.

UN

SEND                           DEUX

+ MORE                          +  DEUX

-------------- +  DEUX

MONEY                        +  DEUX

------------

NEUF



General Concepts

• The difficulty: the number of combinations to consider can
be gigantic for a real world problem.
– Example: for the sudoku game, a coarse estimation of the 

number of combinations is :
(8!)^9 ≈ 10^41 combinations.

– For small combinatorial problems, (almost) every algorithm
should work …

• Consequence : browsing all these combinations one by one 
would take a gigantic time, even on the fastest computer.
– Phenomenon of combinatorial explosion.

– In the worst case, the number of combinations to consider is an 
exponential function of the size of one dimension of the data.



General Concepts

while(…) {

combinaison = nextCombinaison(existant);

if (qualite(combinaison) > bestQualite) {

bestQualite = qualite(combinaison);

bestCombinaison = combinaison;

}

}

MUCH TOO LONG !!!!

(except on small problems)



General Concepts

• Idea of constraint programming:

– Consider the structure of the problem: 
Decompose the problem as

• Variables

– Each variable has a finite domain (variable expressed in 
extension).

• Relations among variables (constraints)

– A constraint must always be satisfied; It reduces the variables’ 
domains.

– A unique algorithm cleverly uses this model.

• Heuristics



General Concepts

• Other example of split between model and 
solver:

– Fact base / rule base and inference engine in 
knowledge-based systems.

– (Mixed Integer) Linear Programming in Operational
Research.

• Consequence:

– A user writes a model and gives heuristics.

– The Constraint Programming engine searches for a 
solution.



General Concepts

• Examples of problems « solvable » by CP:

– Assign companies to interns while following their
wishes.

– Optimally plan air traffic (assign flight corridors to 
aircrafts, optimize flight crew shifts, …)

– Schedule tasks, so that the makespan is minimized
and the resources consumption are minimized.

– Optimize component location on a mother board.

– Build a menu both healthy and tasty in a restaurant.

– …



General Concepts

• Constraint Programming has been proposed by 
Jean-Louis Laurière in 1976 in his Doctorat d’Etat.

• Seminal Publication:
– Jean-Louis Laurière, A Language and a Program for 

Stating and Solving Combinatorial Problems. Artif. 
Intell. 10(1): 29-127 (1978).

• Packages : CPLEX CP Optimizer from IBM, CHOCO 
from EMN, GECODE, CHIP from COSYTEC, 
SICSTUS PROLOG, MINIZINC+ solvers, etc.

• French Association for Constraint Programming: 
http://afpc.greyc.fr/web/



Model

• Discrete variables with finite domain:

– For i from 1 to n, a variable Vi

– For j from 1 to n, a domain Dj = { v1, v2, …, vf(j) }.

– For all i from 1 to n, Vi ∈ Di

• Constraints on these variables:

– For k from 1 to m, Ck = ( Xk, Rk) with : 

• Xk = { Vi1, Vi2, …, Vik } // The variables of Ck

• Rk ⊂ Di1 x Di2 x … x Dik // The possible values of these

// variables, together compatible          

// with Ck



Vocabulary

• A CSP (constraint satisfaction problem) might be:

– Under constrained: too few constraints.

– Over constrained: too many constraints.

• Given a CSP, one can …:

– Search for a solution

– Search for all solutions

– Search for an optimal solution given some cost

function to minimize

– Prove that there is no solution.



Constraints

• A constraint can be expressed:
– In extension: give the sets of possible values of variables

– Arithmetically: <, ⩽, >, ⩾, =, ≠, +, -, /, *, …

– Logically: �, =>, <=, OR, AND, NOT, …

– Globally: AllDifferent(x1, x2, …, xn), Geost(f1, f2, …, fn), ...

• A constraint can be:
– Hard: a constraint must always be satisfied.

– Soft: a constraint is sometimes satisfied and sometimes
violated, given a criterion

• A contraint can be:
– Unary.           Example : x ∈ [1, 5] 

– Binary.           Example : x < y

– N-ary.            Example : AllDifferent(V1, V2, …, Vn)



Constraints

• Example of hard constraints:

– x ∈ [1, 5] ; y ∈ [ 1, 5] ; x < y

– x : 

– y : 

• Example of soft constraints:

– In a scheduling problem,

Y = #(ti < deadlinei) and maximize Y 

1 2 3 4 5



Constraints

Global constraints

• AllDifferent(V1, V2, …, Vn)

– The variables Vi must be all different.

– Logically equivalent to:

V1 ≠ V2 ∧ V1 ≠ V3 ∧ … ∧ V1 ≠ Vn ∧

V2 ≠ V3 ∧ … ∧ V2 ≠ Vn ∧

… ∧

Vn-1 ≠ Vn

• Property: if there are m variables in AllDiff, and n
distinct values together possible, and if m > n, 
then the constraint cannot be satisfied.



Example of model

• A model for the sudoku game:

– A variable is an empty cell in the grid.

– A domain is the set of integers from 1 to 9

• If the cell already includes a number, it appears as a 
constant in the constraint.

– Constraints:

• The variables of a small grid are all different and 
different from constants.

• The variables of a row are all different.

• The variables of a column are all different.



Example of model

• 1st model for the N-queen problem (here, N = 8) :

– A pair of variables (xi, yi) per queen i. The queen i is

located on colum xi and on row yi

– The domain of xi is [1, 8]

– The domain de yi is [1, 8]

– Constraints:

• xi ≠ xj // Different columns

• yi ≠ yj // Different rows

• xi + yi ≠ xj + yj // Different 1st diagonal

• xi – yi ≠ xj – yj // Different 2nd diagonal



Example of model

• 2nd model for the N-queen problem (here, N = 8) :

– The variable xi is the row of the i-th column on which

the i-th queen is located.

– The domain of xi is [1, 8]

– Constraints:

• The constraints on columns are satisfied by construction.

• xi ≠ xj // Different rows

• xi + i ≠ xj + j // Different 1sr diagonals

• xi - i ≠ xj - j // Different 2st diagonals



Example of model

• 3rd model for the N-queen problem (N = 8) :

– The cells of the grid are numbered from 1 to 64.

– The variable xi is the index of the cell in this

numbering at which queen i is located.

– Constraints:

• xi / 8 ≠ xj / 8 // Different rows

• xi % 8 ≠ xj % 8 // Different columns

• Constraints on the 1e diagonal

• Constraints on the 2e diagonal



Example of model

• Cryptarithmetics: SEND + MORE = MONEY

• The model:

– Variables : S, M ∈ [1, 9] ; E, N, D, O, R, N, Y ∈ [0, 9]

– Constraints :

• D + E = Y + 10 * R1

• N + R + R1 = E + 10 * R2

• E + O + R2 = N + 10 * R3

• S + M + R3 = O + 10 * M

• Secondary variables : R1, R2, R3 ∈ [0, 1]



Vocabulary

• An assignment is the fact of assigning a variable to a value of its domain.

– Variable Vi is assigned to its value vi,j : Di = { vi,j }

• An assignment of variables to values is :

A = {(Vi1, vi1), (Vi2, vi2), …, (Vik, vik)}

• An assignment can be :

– total : every variable has a value (k = n)

– partial : some variables have a value, but not all (k < n).

• An assignment A is consistant iff it does not violate any constraint Ck.

• A solution to a CSP is a total consistant assignment of variables.

• Some CSPs require to maximize an objective function f (or minimize a cost

function, equivament to an objective one, by adding a minus « - » sign).



Algorithms

• Commutativity :

– A problem is commutative iff the order of 

application of actions has no effect on the result.

• A CSP is commutative : when values are 

assigned to variables, the same partial 

assignment is reached whatever the order is.

• Consequence: we can assign variables one 

after the other, as needed.



Algorithms : backtrack (1 / 14)



Algorithms : backtrack (2 / 14)

V1 V3 V4 V5V2



Algorithms : backtrack (3 / 14)

V1 V3 V4 V5V2

CHOOSE-UNASSIGNED-VARIABLE



Algorithms : backtrack (4 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE



Algorithms : backtrack (5 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES



Algorithms : backtrack (6 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3



One domain

becomes empty !

Algorithms : backtrack (7 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3

BACKTRACK



Algorithms : backtrack (8 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks



Algorithms : backtrack (9 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks



Algorithms : backtrack (10 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES



Algorithms : backtrack (11 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks



Algorithms : backtrack (12 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3



Algorithms : backtrack (13 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3
CHOOSE-UNASSIGNED-VARIABLE



Algorithms : backtrack (14 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3
CHOOSE-UNASSIGNED-VARIABLE

…



Heuristics (1 / 2)

• A heuristics makes a choice better than randomly.
– Expressed in terms of variables, domains and constraints.

– Or can be based on exogeneous information (e.g., the application 
domain of the CSP).

– Prototype in C++ : int heuristics(Assignment* assignment, Csp* csp);

• Heuristics on variables : CHOOSE-UNASSIGNED-VARIABLE()
– Static / dynamic.

– First-fail : choose the variable with the smallest domain.

– Smallest : choose the variable with the smallest value in its domain.

– Constraint: choose the variable linked to the maximum number of 
constraints.

– …



Heuristics (2 / 2)

• Heuristics on values : SORT-DOMAIN-VALUES()

– Static / dynamic

– Min : assign a variable to its minimum value

– Max : assign a variable to its maximum value

– Median : assign a variable to its median value; or different from its

median value (middle-out)

– Split : constrain the variable to its lower/upper half domain

– Regret : assign the variable to the value which removes the least 

number of values to other variables.

– …

• Search strategy : additional constraints which orient search.



Filtering

• What does the assigment of a variable imply

for other variables ?

• FORWARD-CHECKING: each time a variable Vi

is instantiated, consider variables Vj

connected to Vi by a constraint Ck, and remove

from the domain of variable Vj the values 

which are inconsistant with constraint Ck.



Filtering by Forward-Checking

Graph coloring

A and B are green or red

C is green, blue or red

D is blue or green

A

B

C

D

Assign a color to A,B,C and D (below) so that no two colors

are adjacent, with possible colors for each rectangle:



Filtering by Forward-Checking

Model

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green, blue, red}

{blue, green}

- Some pairs of variables are linked by a constraint of difference

- The domain of each variable is shown in bracket {...}.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green, blue, red}

{blue, green}

- Let us assume B is arbitrarily assigned to red.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{red}

{green, blue, red}

{blue, green}

- Instantiation of A to green.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green}

{red}

{green, blue}

{blue, green}

- Instantiation of C to blue.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green}

{red}

{blue}

{blue, green}

- Instantiation of D to green.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green}

{red}

{blue}

{green}

- Solution ! A

B

C

D



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green, blue, red}

{blue, green}

- Now, let us assume that C is arbitrarily assigned to green.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green}

{blue, green}

- Instantiation of D to blue, and A and B to red.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{red}

{red}

{green}

{blue}

- Removing red from B’s domain.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{red}

{}

{green}

{blue}

- B has an empty domain: failure ! 

- Backtrack is needed in the process…



Arc consistancy

A: 1, 2

C : 1, 2B : 1, 2

≠

• Arc consistancy is not sufficient for the example above: path

consistancy is required.

• K-consistancy, strong k-consistancy.

≠

≠



Back-jumping

• The algorithm Backtrack goes back to the 
previous choice (e.g., lastly assigned variable).

– Chronological backtracking.

• Back-jumping: goes back to a variable which
caused the failure (e.g., the most recent) in 
the search tree.

• The conflict set of a variable V is the set of 
previously instantiated variables, linked to V
by a constraint.



Back-jumping [Russel & Norvig 2010]

A

B

C

D

E

{ red, green, blue}

{ red, green, blue}

{ rouge, green, blue}

{ red, green, blue}

{ red, green, blue}

• Let us assume that the order of instantiation is A, B, C, E, D.

• A = red ; B = green ; C = blue ; E = red

• No value for D. Chronological backtracking goes back to E !!!

• The conflict set of D is { A, B, C }. Back-jumping goes back to C and not E.

≠
≠

≠

≠

≠
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Conclusion

• Constraint programming is a paradigm for solving
combinatorial problems.

• Difficult on real problems due to combinatorial explosion.

• Constraint programming is based on a model (variables, 
domains, constraints), a unique algorithm (the solver) and 
uses heuristics (on variables, on values).

• The algorithm uses forward checking to filter the domains
of variables (removing inconsistent values). Arc consistancy
is a more general algorithm for that.

• When an empty domain is detected, the algorithm goes up 
in the search tree (chronological backtracking, back 
jumping) to change a previously made choice, hoping to do 
better next.


