Constraint Programming

Philippe Morignot
philippe.morignot@vedecom.fr

Table of Contents

General concepts
Models
Algorithms
Forward checking
Backtracking
Conclusion

General Concepts

e Constraint Programming is a paradigm for solving
combinatorial problems.

e Other approaches:
— Mixed Integer Programming
— Evolutionary algorithms

— Search algorithms in a state space (e.g., blind search,
heuristic search such as A*).

— Simulated annealing
— Taboo algorithm

General Concepts

e A combinatorial problem is a problem ...

— ... which can be modelled as entities ...
— ... maintaining relations ...
— ... and in which a solution must be found:
the solution to the problem.
 There can be several solutions.

e Finding one
* Finding the best one

General Concepts

e Example of a combinatorial problem: the
sudoku game.

7|8

8 7
4 9
2|7
2
5 6 1 3 4
2 6
8 9 7
4 8 6

General Concepts

 Example of a combinatorial problem: the N-
queen problem (here, N = 8).

s

s

s

e

e !

s

= R W k= N =] OO

General Concepts

e Example of combinatorial problem:
cryptarithmetics.

UN

SEND DEUX

+ MORE + DEUX
.............. + DEUX
MONEY + DEUX

General Concepts

e The difficulty: the number of combinations to consider can
be gigantic for a real world problem.

— Example: for the sudoku game, a coarse estimation of the
number of combinations is :

(81)A9 = 10741 combinations.

— For small combinatorial problems, (almost) every algorithm
should work ...

 Consequence : browsing all these combinations one by one
would take a gigantic time, even on the fastest computer.
— Phenomenon of combinatorial explosion.

— In the worst case, the number of combinations to consider is an
exponential function of the size of one dimension of the data.

General Concepts

MUCH TOO LONG !!!!
(except on small problems)

General Concepts

* |dea of constraint programming:

— Consider the structure of the problem:
Decompose the problem as

e Variables

— Each variable has a finite domain (variable expressed in
extension).

e Relations among variables (constraints)

— A constraint must always be satisfied; It reduces the variables’
domains.

— A unique algorithm cleverly uses this model.
* Heuristics

General Concepts

e Other example of split between model and
solver:

— Fact base / rule base and inference engine in
knowledge-based systems.

— (Mixed Integer) Linear Programming in Operational
Research.

* Consequence:
— A user writes a model and gives heuristics.

— The Constraint Programming engine searches for a
solution.

General Concepts

 Examples of problems « solvable » by CP:

— Assign companies to interns while following their
wishes.

— Optimally plan air traffic (assign flight corridors to
aircrafts, optimize flight crew shifts, ...)

— Schedule tasks, so that the makespan is minimized
and the resources consumption minimized.

— Optimize component location on a mother board.
— Build a menu both healthy and tasty in a restaurant.

General Concepts

Constraint Programming has been proposed by
Jean-Louis Lauriere in 1976 in his HdR.

Seminal Publication:

— Jean-Louis Lauriere, A Language and a Program for
Stating and Solving Combinatorial Problems. Artif.
Intell. 10(1): 29-127 (1978).

Packages : CPLEX CP Optimizer from IBM, CHOCO

from EMN, CHIP from COSYTEC, SICSTUS
PROLOG, MINIZINC+ solvers, etc.

French Association for Constraint Programming:
nttp://afpc.greyc.fr/web/

Model

* Discrete variables with finite domain:
— For i from 1 to n, a variable V,
— Forj from 1 to n, a domain D = {v,v,, ..., Vi) 1.
— Foralli, V; €D,
e Constraints on these variables:
— For kfrom 1tom, C, = (X, R,) with :
e X, ={V., V, .., V,} // The variables of C,
* R, [/D;;xD,x..xD, [/ The possible values of these

// variables, together compatible
// with C,

Vocabulary

e A CSP might be:

— Under constrained: too few constraints.
— Over constrained: too many constraints.

e Given a CSP, one can ...:
— Search for a solution
— Search for all solutions

— Search for an optimal solution given some cost
function

— Proove that there is no solution.

Constraints

* A constraint can be expressed:
— In extension: give the sets of possible values of variables
— Arithmetically: <, <, >, >, =, %+ -/, *, ...
— Logically: &, =>, <=, OU, ET, NON, ...
— Globally: AllDifferent(x,, x,, ..., X,), Geost(f;, f5, .-, f,), ---
e A constraint can be:
— Hard: a constraint must always be satisfied.

— Soft: a constraint is sometimes satisfied and sometimes
violated, given a criterion

e A contrainte can be:
— Unary. Example : x € [1, 5]
— Binairy. Example : x <y
— N-ary. Example : AllDifferent(V,, V,, ..., V)

Constraints

 Example of hard constraints:
—x€[1,5];y€e[1,5];x<y

— X @ @ @ O

—y: —X O O O

1 2 3 4

 Example of soft constraints:
— In a scheduling problem,

Y = #(t; < deadline,) and maximize Y

Constraints
Global constraints

* AlIDifferent(V,, V,, ..., V)
— The variables V; must be all different.
— Logically equivalent to:
V.2V, AV, 2V A LAV 2V A
V,Z2V;ALLAVL2V A
AN
V., 2V
 Property: if there are m variables in AlIDiff, and n
distinct values together possible, and if m > n,
then the constraint cannot be satisfied.

Example of model

A model for the sudoku game:
— A variable is an empty cell in the grid.

— A domain is the set of integers from 1to 9

 |f the cell already includes a number, it appears as a
constant in the constraint.

— Constraints:

e The variables of a small grid are all different and
different from constants.

* The variables of a row are all different.
e The variables of a column are all different.

Example of model

A 1st model for the N-queen problem (here, N =

8):

— A pair of variables (x;, y;) per queen i. The queen i is
located on colum x; and on row y;

— The domain of x; is [1, 8]
— The domain de y; is [1, 8]
— Constraints:

* X; % X;

*Vi*Y;

* Xty EX tY,

*XTYiEX Y

// Different columns

// Different rows

// Different 1st diagonal
// Different 2nd diagonal

Example of model

e A 2" model for the N-queen problem (here, N =
8):
— The variable x; is the row of the i-th column on which
the i-th queen is located.

— The domain of x;is [1, 8]

— Constraints:
* The constraints on columns are satisfied by construction.
* X %X // Different rows
© X;+i#EX] // Different 15" diagonals
© X;-i#EX-] // Different 25t diagonals

Example of model

* A 3rd model for the N-queen problem (here, N

=8):
— The cells of the grid are numbered from 1 to 64.
— The variable x; is the index of the cell in this
numbering at which queen i is located.
— Constraints:
* x./ 8% xj/ 8 // Different rows
* X; % 8#Xx%8 // Different columns

e Constraints on the 1¢ diagonal
e Constraints on the 2¢ diagonal

Example of model

e Cryptarithmetics: SEND + MORE = MONEY

e The model:
— Variables:S,M €[1,9];E,N,D,O,R,N, Y€ [0, 9]
— Constraints :
eD+E=Y+10*R1
e N+R+R1=E+10 *R2
e E+O+R2=N+10*R3
*S+M+R3=0+10*M
e Secondary variables : R1, R2, R3 € [0, 1]

Vocabulary

An assignment is the fact of assigning a variable to a value of its domain.

— Variable V;is assigned to its value v; : D; = {v; }
An assignment of variables to values is :
A={(Viy, via), (Viz, Vig), ey (Vg Vi)}
An assignment can be :

— total : every variable has a value (k = n)
— partial : some variables have a value, but not all (k < n).

An assignment A is consistant iff it does not violate any constraint C,.

A solution to a CSP (Constraint Satisfaction Problem) is a total consistant
assignment of variables.

Some CSPs require to maximize an objective function f.

Algorithms

e Commutativity :

— A problem is commutative iff the order of
application of actions has no effect on the result.
e A CSPis commutative : when values are
assigned to variables, the same partial
assignment is reached whatever the order is.

 Consequence: we can assign variables one
after the other, as needed.

Algorithms : backtrack (1 / 14)

Algorithms : backtrack (2 / 14)

Algorithms : backtrack (3 / 14)

CHOOSE-UNASSIGNED-VARIABLE

Algorithms : backtrack (4 / 14)

CHOOSE-UNASSIGNED-VARIABLE

Algorithms : backtrack (5 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Algorithms : backtrack (6 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

() () (D) () Consistancy checks

Algorithms : backtrack (7 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

(1) () () () Consistancy checks

One domain

becomes empty ! BACKTRACK

Algorithms : backtrack (8 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

(D) (D)) (D)) Consistancy checks

Algorithms : backtrack (9 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

() (D)) (D) () Consistancy checks

Algorithms : backtrack (10 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Algorithms : backtrack (11 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

() (D) (D) () Consistancy checks

Algorithms : backtrack (12 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

() () (D) () Consistancy checks

Algorithms : backtrack (13 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

CHOOSE-UNASSIGNED-VARIABLE

Algorithms : backtrack (14 / 14)

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

(v) () () (vs) (%) Consistancy checks
@ @ @ @ CHOOSE-UNASSIGNED-VARIABLE

Heuristics (1 / 2)

* A heuristics can make a choice.
— Expressed in terms of variables, domaines and constraints.

— Or can be based on exogeneous information (e.g., the application
domain of the CSP).

— Prototype in C++ : int heuristics(Assignment™* assignment, Csp* csp);

e Heuristics on variables : CHOOSE-UNASSIGNED-VARIABLE()
— Static / dynamic.
— First-fail : choose the variable with the smallest domain.
— Smallest : choose the variable with the smallest value in its domain.

— Constraint: choose the variable linked to the maximum number of
constraints.

Heuristics (2 / 2)

e Heuristics on values : SORT-DOMAIN-VALUES()

Static / dynamic
Min : assign a variable to its minimum value
Max : assign a variable to its maximum value

Median : assign a variable to its median value; or different from its
median value (middle-out)

Split : constrain the variable to its lower/upper half domain

Regret : assign the variable to the value which removes the least
number of values to other variables.

e Search strategy : additional constraints which orient search.

Filtering

e What does the assigment of a variable imply
for other variables ?

* FORWARD-CHECKING: each time a variable V;
is instantiated, consider variables V;
connected to V; by a constraint C,, and remove
from the domain of variable V; the values
which are inconsistant with constraint C,.

Filtering by Forward-Checking
Graph coloring

Assign a color to A,B,C and D (below) so that no two colors
are adjacent, with possible colors for each rectangle:

A and B are green or red
Cis green, blue or red
C D is blue or green

Filtering by Forward-Checking
Model

{green, red}
A

B 7 D

{green, red} {blue, green}
a . ea

{green, blue, red}

- Some pairs of variables are linked by a constraint of difference
- The domain of each variable is shown in bracket {...}.

Filtering by Forward-Checking

- Let us assume B is arbitrarily assigned to red.

{green, red}

B 7 D

{g»<en, red} 2 - {blue, green}

{green, blue, red}

Filtering by Forward-Checking

- Instantiation of A to green.

{green, g}
A
-
/ #
B 7 D
fred} }\‘ Z {blue, green}

C
{green, blue »«d}

Filtering by Forward-Checking

- Instantiation of C to blue.

{red} {blue, green}

Filtering by Forward-Checking

- Instantiation of D to green.

Filtering by Forward-Checking

- Solution |

{green}

{red} {green}

Filtering by Forward-Checking

- Now, let us assume that Cis arbitrarily assigned to green.

{green, red}

{green, red} {blue, green}

Filtering by Forward-Checking

- Instantiation of D to blue, and A and B to red.

{Brcen, red}
A

Filtering by Forward-Checking

- Removing red from B’s domain.

Filtering by Forward-Checking

- B has an empty domain: failure |
- Backtrack is needed in the process...

{red}

{} {blue}

Arc consistancy

e Arc consistancy is not sufficient for the example above: path
consistancy is required.

e K-consistancy, strong k-consistancy.

Back-jumping

 The algorithm Backtrack goes back to the
previous choice (e.g., lastly assigned variable).
— Chronological backtracking.

e Back-jumping: goes back to a variable which
caused the failure (e.g., the most recent) in
the search tree.

e The conflict set of a variable V is the set of

previously instantiated variables, linked to V
by a constraint.

Back-jumping

{red, green, blue}

{red, green, blue}

Let us assume that the order of instantiation is A, B, C, E, D.

A=red; B=green; C=blue; E =red

No value for D. Chronological backtracking goes back to E !!!

The conflict set of Dis { A, B, C }. Back-jumping goes back to C and not E.

Conclusion

Constraint programming is a paradigm for solving
combinatorial problems.

Constraint programming is based on a model
(variables, domains, constraints) and an algorithm.

The algorithm uses forward checking to filter the
domains of variables (removing values). Arc
consistancy is the more general algorithm for that.

When an empty domain is detected, goes up in the
search tree (chronological backtracking, back jumping)
to change a previously made choice (and do better!).

