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General Concepts

• Constraint Programming is a paradigm for solving
combinatorial problems.

• Other approaches:

– Mixed Integer Programming

– Evolutionary algorithms

– Search algorithms in a state space (e.g., blind search, 
heuristic search such as A*).

– Simulated annealing

– Taboo algorithm

– …



General Concepts

• A combinatorial problem is a problem …

– … which can be modelled as entities …

– … maintaining relations …

– … and in which a solution must be found:

the solution to the problem.

• There can be several solutions.

• Finding one

• Finding the best one



General Concepts

• Example of a combinatorial problem: the 

sudoku game.



General Concepts

• Example of a combinatorial problem: the N-

queen problem (here, N = 8).



General Concepts

• Example of combinatorial problem: 
cryptarithmetics.

UN

SEND                           DEUX

+ MORE                          +  DEUX

-------------- +  DEUX

MONEY                        +  DEUX

------------

NEUF



General Concepts

• The difficulty: the number of combinations to consider can
be gigantic for a real world problem.
– Example: for the sudoku game, a coarse estimation of the 

number of combinations is :
(8!)^9 ≈ 10^41 combinations.

– For small combinatorial problems, (almost) every algorithm
should work …

• Consequence : browsing all these combinations one by one 
would take a gigantic time, even on the fastest computer.
– Phenomenon of combinatorial explosion.

– In the worst case, the number of combinations to consider is an 
exponential function of the size of one dimension of the data.



General Concepts

while(…) {

combinaison = nextCombinaison(existant);

if (qualite(combinaison) > bestQualite) {

bestQualite = qualite(combinaison);

bestCombinaison = combinaison;

}

}

MUCH TOO LONG !!!!

(except on small problems)



General Concepts

• Idea of constraint programming:

– Consider the structure of the problem: 
Decompose the problem as

• Variables

– Each variable has a finite domain (variable expressed in 
extension).

• Relations among variables (constraints)

– A constraint must always be satisfied; It reduces the variables’ 
domains.

– A unique algorithm cleverly uses this model.

• Heuristics



General Concepts

• Other example of split between model and 
solver:

– Fact base / rule base and inference engine in 
knowledge-based systems.

– (Mixed Integer) Linear Programming in Operational
Research.

• Consequence:

– A user writes a model and gives heuristics.

– The Constraint Programming engine searches for a 
solution.



General Concepts

• Examples of problems « solvable » by CP:

– Assign companies to interns while following their
wishes.

– Optimally plan air traffic (assign flight corridors to 
aircrafts, optimize flight crew shifts, …)

– Schedule tasks, so that the makespan is minimized
and the resources consumption minimized.

– Optimize component location on a mother board.

– Build a menu both healthy and tasty in a restaurant.

– …



General Concepts

• Constraint Programming has been proposed by 
Jean-Louis Laurière in 1976 in his HdR.

• Seminal Publication:
– Jean-Louis Laurière, A Language and a Program for 

Stating and Solving Combinatorial Problems. Artif. 
Intell. 10(1): 29-127 (1978).

• Packages : CPLEX CP Optimizer from IBM, CHOCO 
from EMN, CHIP from COSYTEC, SICSTUS 
PROLOG, MINIZINC+ solvers, etc.

• French Association for Constraint Programming: 
http://afpc.greyc.fr/web/



Model

• Discrete variables with finite domain:

– For i from 1 to n, a variable Vi

– For j from 1 to n, a domain Dj = { v1, v2, …, vf(j) }.

– For all i, Vi ∈ Di

• Constraints on these variables:

– For k from 1 to m, Ck = ( Xk, Rk) with : 

• Xk = { Vi1, Vi2, …, Vik } // The variables of Ck

• Rk ⊂ Di1 x Di2 x … x Dik // The possible values of these

// variables, together compatible          

// with Ck



Vocabulary

• A CSP might be:

– Under constrained: too few constraints.

– Over constrained: too many constraints.

• Given a CSP, one can …:

– Search for a solution

– Search for all solutions

– Search for an optimal solution given some cost
function

– Proove that there is no solution.



Constraints

• A constraint can be expressed:
– In extension: give the sets of possible values of variables

– Arithmetically: <, ⩽, >, ⩾, =, ≠, +, -, /, *, …

– Logically: �, =>, <=, OU, ET, NON, …

– Globally: AllDifferent(x1, x2, …, xn), Geost(f1, f2, …, fn), ...

• A constraint can be:
– Hard: a constraint must always be satisfied.

– Soft: a constraint is sometimes satisfied and sometimes
violated, given a criterion

• A contrainte can be:
– Unary.           Example : x ∈ [1, 5] 

– Binairy.          Example : x < y

– N-ary.             Example : AllDifferent(V1, V2, …, Vn)



Constraints

• Example of hard constraints:

– x ∈ [1, 5] ; y ∈ [ 1, 5] ; x < y

– x : 

– y : 

• Example of soft constraints:

– In a scheduling problem,

Y = #(ti < deadlinei) and maximize Y 

1 2 3 4 5



Constraints

Global constraints

• AllDifferent(V1, V2, …, Vn)

– The variables Vi must be all different.

– Logically equivalent to:

V1 ≠ V2 ∧ V1 ≠ V3 ∧ … ∧ V1 ≠ Vn ∧

V2 ≠ V3 ∧ … ∧ V2 ≠ Vn ∧

… ∧

Vn-1 ≠ Vn

• Property: if there are m variables in AllDiff, and n
distinct values together possible, and if m > n, 
then the constraint cannot be satisfied.



Example of model

• A model for the sudoku game:

– A variable is an empty cell in the grid.

– A domain is the set of integers from 1 to 9

• If the cell already includes a number, it appears as a 
constant in the constraint.

– Constraints:

• The variables of a small grid are all different and 
different from constants.

• The variables of a row are all different.

• The variables of a column are all different.



Example of model

• A 1st model for the N-queen problem (here, N = 
8) :

– A pair of variables (xi, yi) per queen i. The queen i is
located on colum xi and on row yi

– The domain of xi is [1, 8]

– The domain de yi is [1, 8]

– Constraints:

• xi ≠ xj // Different columns

• yi ≠ yj // Different rows

• xi + yi ≠ xj + yj // Different 1st diagonal

• xi – yi ≠ xj – yj // Different 2nd diagonal



Example of model

• A 2nd model for the N-queen problem (here, N = 

8) :

– The variable xi is the row of the i-th column on which

the i-th queen is located.

– The domain of xi is [1, 8]

– Constraints:

• The constraints on columns are satisfied by construction.

• xi ≠ xj // Different rows

• xi + i ≠ xj + j // Different 1sr diagonals

• xi - i ≠ xj - j // Different 2st diagonals



Example of model

• A 3rd model for the N-queen problem (here, N 
= 8) :

– The cells of the grid are numbered from 1 to 64.

– The variable xi is the index of the cell in this
numbering at which queen i is located.

– Constraints:

• xi / 8 ≠ xj / 8 // Different rows

• xi % 8 ≠ xj % 8 // Different columns

• Constraints on the 1e diagonal

• Constraints on the 2e diagonal



Example of model

• Cryptarithmetics: SEND + MORE = MONEY

• The model:

– Variables : S, M ∈ [1, 9] ; E, N, D, O, R, N, Y ∈ [0, 9]

– Constraints :

• D + E = Y + 10 * R1

• N + R + R1 = E + 10 * R2

• E + O + R2 = N + 10 * R3

• S + M + R3 = O + 10 * M

• Secondary variables : R1, R2, R3 ∈ [0, 1]



Vocabulary

• An assignment is the fact of assigning a variable to a value of its domain.

– Variable Vi is assigned to its value vij : Di = { vij }

• An assignment of variables to values is :

A = {(Vi1, vi1), (Vi2, vi2), …, (Vik, vik)}

• An assignment can be :

– total : every variable has a value (k = n)

– partial : some variables have a value, but not all (k < n).

• An assignment A is consistant iff it does not violate any constraint Ck.

• A solution to a CSP (Constraint Satisfaction Problem) is a total consistant 

assignment of variables.

• Some CSPs require to maximize an objective function f.



Algorithms

• Commutativity :

– A problem is commutative iff the order of 

application of actions has no effect on the result.

• A CSP is commutative : when values are 

assigned to variables, the same partial 

assignment is reached whatever the order is.

• Consequence: we can assign variables one 

after the other, as needed.



Algorithms : backtrack (1 / 14)



Algorithms : backtrack (2 / 14)

V1 V3 V4 V5V2



Algorithms : backtrack (3 / 14)

V1 V3 V4 V5V2

CHOOSE-UNASSIGNED-VARIABLE



Algorithms : backtrack (4 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE



Algorithms : backtrack (5 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES



Algorithms : backtrack (6 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3



One domain

becomes empty !

Algorithms : backtrack (7 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3

BACKTRACK



Algorithms : backtrack (8 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks



Algorithms : backtrack (9 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks



Algorithms : backtrack (10 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES



Algorithms : backtrack (11 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks



Algorithms : backtrack (12 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3



Algorithms : backtrack (13 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3
CHOOSE-UNASSIGNED-VARIABLE



Algorithms : backtrack (14 / 14)

V1 V3 V4 V5V2

v1 v2 v4 v5v3

CHOOSE-UNASSIGNED-VARIABLE

SORT-DOMAIN-VALUES

Consistancy checks

V1 V4 V5V3
CHOOSE-UNASSIGNED-VARIABLE

…



Heuristics (1 / 2)

• A heuristics can make a choice.
– Expressed in terms of variables, domaines and constraints.

– Or can be based on exogeneous information (e.g., the application 
domain of the CSP).

– Prototype in C++ : int heuristics(Assignment* assignment, Csp* csp);

• Heuristics on variables : CHOOSE-UNASSIGNED-VARIABLE()
– Static / dynamic.

– First-fail : choose the variable with the smallest domain.

– Smallest : choose the variable with the smallest value in its domain.

– Constraint: choose the variable linked to the maximum number of 
constraints.

– …



Heuristics (2 / 2)

• Heuristics on values : SORT-DOMAIN-VALUES()

– Static / dynamic

– Min : assign a variable to its minimum value

– Max : assign a variable to its maximum value

– Median : assign a variable to its median value; or different from its

median value (middle-out)

– Split : constrain the variable to its lower/upper half domain

– Regret : assign the variable to the value which removes the least 

number of values to other variables.

– …

• Search strategy : additional constraints which orient search.



Filtering

• What does the assigment of a variable imply

for other variables ?

• FORWARD-CHECKING: each time a variable Vi

is instantiated, consider variables Vj

connected to Vi by a constraint Ck, and remove

from the domain of variable Vj the values 

which are inconsistant with constraint Ck.



Filtering by Forward-Checking

Graph coloring

A and B are green or red

C is green, blue or red

D is blue or green

A

B

C

D

Assign a color to A,B,C and D (below) so that no two colors

are adjacent, with possible colors for each rectangle:



Filtering by Forward-Checking

Model

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green, blue, red}

{blue, green}

- Some pairs of variables are linked by a constraint of difference

- The domain of each variable is shown in bracket {...}.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green, blue, red}

{blue, green}

- Let us assume B is arbitrarily assigned to red.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{red}

{green, blue, red}

{blue, green}

- Instantiation of A to green.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green}

{red}

{green, blue}

{blue, green}

- Instantiation of C to blue.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green}

{red}

{blue}

{blue, green}

- Instantiation of D to green.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green}

{red}

{blue}

{green}

- Solution ! A

B

C

D



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green, blue, red}

{blue, green}

- Now, let us assume that C is arbitrarily assigned to green.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{green, red}

{green, red}

{green}

{blue, green}

- Instantiation of D to blue, and A and B to red.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{red}

{red}

{green}

{blue}

- Removing red from B’s domain.



Filtering by Forward-Checking

A

B

C

D

≠
≠

≠

≠ ≠

{red}

{}

{green}

{blue}

- B has an empty domain: failure ! 

- Backtrack is needed in the process…



Arc consistancy

A: 1, 2

C : 1, 2B : 1, 2

≠

• Arc consistancy is not sufficient for the example above: path

consistancy is required.

• K-consistancy, strong k-consistancy.

≠

≠



Back-jumping

• The algorithm Backtrack goes back to the 
previous choice (e.g., lastly assigned variable).

– Chronological backtracking.

• Back-jumping: goes back to a variable which
caused the failure (e.g., the most recent) in 
the search tree.

• The conflict set of a variable V is the set of 
previously instantiated variables, linked to V
by a constraint.



Back-jumping

A

B

C

D

E

{ red, green, blue}

{ red, green, blue}

{ rouge, green, blue}

{ red, green, blue}

{ red, green, blue}

• Let us assume that the order of instantiation is A, B, C, E, D.

• A = red ; B = green ; C = blue ; E = red

• No value for D. Chronological backtracking goes back to E !!!

• The conflict set of D is { A, B, C }. Back-jumping goes back to C and not E.

≠
≠

≠

≠

≠



Conclusion

• Constraint programming is a paradigm for solving
combinatorial problems.

• Constraint programming is based on a model 
(variables, domains, constraints) and an algorithm.

• The algorithm uses forward checking to filter the 
domains of variables (removing values). Arc 
consistancy is the more general algorithm for that.

• When an empty domain is detected, goes up in the 
search tree (chronological backtracking, back jumping) 
to change a previously made choice (and do better!).


