Constraint Programming

Philippe Morignot
philippe.morignot@vedecom.fr

Table of Contents

- General concepts
- Models
- Algorithms
- Forward checking
- Backtracking
- Conclusion

- Constraint Programming is a paradigm for solving combinatorial problems.
- Other approaches:
 - Mixed Integer Programming
 - Evolutionary algorithms
 - Search algorithms in a state space (e.g., blind search, heuristic search such as A*).
 - Simulated annealing
 - Taboo algorithm

— ...

- A combinatorial problem is a problem ...
 - ... which can be modelled as entities ...
 - ... maintaining relations ...
 - ... and in which a solution must be found:
 the solution to the problem.
- There can be several solutions.
 - Finding one
 - Finding the best one

• Example of a combinatorial problem: the sudoku game.

		7	8				1	9
8							7	5
4					9			
			5		2	7		
		2	3			1		
5	6			1		3		4
2					6			1
	8	3		2		9	4	7
		5	4	9		8	6	

 Example of a combinatorial problem: the Nqueen problem (here, N = 8).

• Example of combinatorial problem: cryptarithmetics.

	UN
SEND	DEUX
+ MORE	+ DEUX
	+ DEUX
MONEY	+ DEUX
	NEUF

- The difficulty: the number of combinations to consider can be gigantic for a real world problem.
 - Example: for the sudoku game, a coarse estimation of the number of combinations is :
 - $(8!)^9 \approx 10^41$ combinations.
 - For small combinatorial problems, (almost) every algorithm should work ...
- Consequence: browsing all these combinations one by one would take a gigantic time, even on the fastest computer.
 - Phenomenon of combinatorial explosion.
 - In the worst case, the number of combinations to consider is an exponential function of the size of one dimension of the data.

```
while( ) {
  combination = nextCombination(existant);
  if (qualite(combination) > bestQualite) {
     bestQualite = qualite(combination);
     bestCombination = combination;
  }
}
```

MUCH TOO LONG!!!!

(except on small problems)

- Idea of constraint programming:
 - Consider the structure of the problem:
 Decompose the problem as
 - Variables
 - Each variable has a finite domain (variable expressed in extension).
 - Relations among variables (constraints)
 - A constraint must always be satisfied; It reduces the variables' domains.
 - A unique algorithm cleverly uses this model.
 - Heuristics

- Other example of split between model and solver:
 - Fact base / rule base and inference engine in knowledge-based systems.
 - (Mixed Integer) Linear Programming in Operational Research.
- Consequence:
 - A user writes a model and gives heuristics.
 - The Constraint Programming engine searches for a solution.

- Examples of problems « solvable » by CP:
 - Assign companies to interns while following their wishes.
 - Optimally plan air traffic (assign flight corridors to aircrafts, optimize flight crew shifts, ...)
 - Schedule tasks, so that the makespan is minimized and the resources consumption minimized.
 - Optimize component location on a mother board.
 - Build a menu both healthy and tasty in a restaurant.

— ...

- Constraint Programming has been proposed by Jean-Louis Laurière in 1976 in his HdR.
- Seminal Publication:
 - Jean-Louis Laurière, A Language and a Program for Stating and Solving Combinatorial Problems. <u>Artif.</u> <u>Intell. 10</u>(1): 29-127 (1978).
- <u>Packages</u>: CPLEX CP Optimizer from IBM, CHOCO from EMN, CHIP from COSYTEC, SICSTUS PROLOG, MINIZINC+ solvers, etc.
- French Association for Constraint Programming: http://afpc.greyc.fr/web/

Model

- Discrete variables with finite domain:
 - For i from 1 to n, a variable V_i
 - For j from 1 to n, a domain $D_j = \{ v_1, v_2, ..., v_{f(j)} \}$.
 - − For all $i, V_i \in D_i$
- Constraints on these variables:
 - For k from 1 to m, $C_k = (X_k, R_k)$ with :
 - $X_k = \{ V_{i1}, V_{i2}, ..., V_{ik} \}$ // The variables of C_k
 - $R_k \subset D_{i1} \times D_{i2} \times ... \times D_{ik}$ // The possible values of these // variables, together compatible // with C_k

Vocabulary

- A CSP might be:
 - Under constrained: too few constraints.
 - Over constrained: too many constraints.
- Given a CSP, one can ...:
 - Search for a solution
 - Search for all solutions
 - Search for an optimal solution given some cost function
 - Proove that there is no solution.

Constraints

- A constraint can be expressed:
 - In extension: give the sets of possible values of variables
 - Arithmetically: <, ≤, >, ≥, =, ≠, +, -, /, *, ...
 - Logically: ⇔, =>, <=, OU, ET, NON, ...
 - Globally: AllDifferent($x_1, x_2, ..., x_n$), Geost($f_1, f_2, ..., f_n$), ...
- A constraint can be:
 - Hard: a constraint must always be satisfied.
 - Soft: a constraint is sometimes satisfied and sometimes violated, given a criterion
- A contrainte can be:
 - Unary. Example: $x \in [1, 5]$
 - Binairy. Example: x < y
 - N-ary. Example : AllDifferent($V_1, V_2, ..., V_n$)

Constraints

Example of hard constraints:

$$-x \in [1, 5]$$
; $y \in [1, 5]$; $x < y$

- Example of soft constraints:
 - In a scheduling problem, $Y = \#(t_i < deadline_i)$ and maximize Y

Constraints Global constraints

- AllDifferent(V₁, V₂, ..., V_n)
 - The variables V_i must be all different.
 - Logically equivalent to:

$$V_1 \neq V_2 \land V_1 \neq V_3 \land ... \land V_1 \neq V_n \land$$

$$V_2 \neq V_3 \land ... \land V_2 \neq V_n \land$$

$$... \land$$

$$V_{n-1} \neq V_n$$

Property: if there are m variables in AllDiff, and n distinct values together possible, and if m > n, then the constraint cannot be satisfied.

- A model for the sudoku game:
 - A variable is an empty cell in the grid.
 - A domain is the set of integers from 1 to 9
 - If the cell already includes a number, it appears as a constant in the constraint.
 - Constraints:
 - The variables of a small grid are all different and different from constants.
 - The variables of a row are all different.
 - The variables of a column are all different.

- A 1st model for the N-queen problem (here, N = 8):
 - A pair of variables (x_i, y_i) per queen i. The queen i is located on colum x_i and on row y_i
 - The domain of x_i is [1, 8]
 - The domain de y_i is [1, 8]
 - Constraints:

```
• x_i \neq x_j // Different columns

• y_i \neq y_j // Different rows

• x_i + y_i \neq x_j + y_j // Different 1st diagonal

• x_i - y_i \neq x_i - y_i // Different 2nd diagonal
```

- A 2nd model for the N-queen problem (here, N = 8):
 - The variable x_i is the row of the i-th column on which the i-th queen is located.
 - The domain of x_i is [1, 8]
 - Constraints:
 - The constraints on columns are satisfied by construction.

```
    x<sub>i</sub> ≠ x<sub>j</sub> // Different rows
    x<sub>i</sub> + i ≠ x<sub>j</sub> + j // Different 1<sup>sr</sup> diagonals
    x<sub>i</sub> - i ≠ x<sub>i</sub> - j // Different 2<sup>st</sup> diagonals
```

- A 3rd model for the N-queen problem (here, N = 8):
 - The cells of the grid are numbered from 1 to 64.
 - The variable x_i is the index of the cell in this numbering at which queen i is located.
 - Constraints:

```
• x_i / 8 \neq x_j / 8 // Different rows
• x_i \% 8 \neq x_i \% 8 // Different columns
```

- Constraints on the 1^e diagonal
- Constraints on the 2^e diagonal

- Cryptarithmetics: SEND + MORE = MONEY
- The model:
 - Variables : S, M \in [1, 9] ; E, N, D, O, R, N, Y \in [0, 9]
 - Constraints :
 - D + E = Y + 10 * R1
 - N + R + R1 = E + 10 * R2
 - E + O + R2 = N + 10 * R3
 - S + M + R3 = O + 10 * M
 - Secondary variables : R1, R2, R3 ∈ [0, 1]

Vocabulary

- An <u>assignment</u> is the fact of assigning a variable to a value of its domain.
 - Variable V_i is assigned to its value v_{ii} : $D_i = \{v_{ii}\}$
- An assignment of variables to values is :

$$A = \{(V_{i1}, V_{i1}), (V_{i2}, V_{i2}), ..., (V_{ik}, V_{ik})\}$$

- An assignment can be :
 - $\underline{\text{total}}$: every variable has a value (k = n)
 - partial : some variables have a value, but not all (k < n).
- An assignment A is **consistant** iff it does not violate any constraint C_k .
- A <u>solution</u> to a CSP (Constraint Satisfaction Problem) is a total consistant assignment of variables.
- Some CSPs require to maximize an objective function *f*.

Algorithms

- Commutativity:
 - A problem is commutative iff the order of application of actions has no effect on the result.
- A CSP is commutative: when values are assigned to variables, the same partial assignment is reached whatever the order is.
- Consequence: we can assign variables one after the other, as needed.

Algorithms: backtrack (1 / 14)

Algorithms: backtrack (2 / 14)

Algorithms: backtrack (3 / 14)

Algorithms: backtrack (4 / 14)

Algorithms: backtrack (5 / 14)

Algorithms: backtrack (6 / 14)

Algorithms: backtrack (7 / 14)

becomes empty!

Algorithms: backtrack (8 / 14)

Algorithms: backtrack (9 / 14)

Algorithms: backtrack (10 / 14)

Algorithms: backtrack (11 / 14)

Algorithms: backtrack (12 / 14)

Algorithms: backtrack (13 / 14)

Algorithms: backtrack (14 / 14)

Heuristics (1 / 2)

- A heuristics can make a choice.
 - Expressed in terms of variables, domaines and constraints.
 - Or can be based on exogeneous information (e.g., the application domain of the CSP).
 - Prototype in C++: int heuristics(Assignment* assignment, Csp* csp);
- <u>Heuristics on variables</u>: CHOOSE-UNASSIGNED-VARIABLE()
 - Static / dynamic.
 - First-fail: choose the variable with the smallest domain.
 - Smallest: choose the variable with the smallest value in its domain.
 - Constraint: choose the variable linked to the maximum number of constraints.

— ...

Heuristics (2 / 2)

- Heuristics on values: SORT-DOMAIN-VALUES()
 - Static / dynamic
 - Min: assign a variable to its minimum value
 - Max: assign a variable to its maximum value
 - Median: assign a variable to its median value; or different from its median value (middle-out)
 - Split: constrain the variable to its lower/upper half domain
 - Regret: assign the variable to the value which removes the least number of values to other variables.
 - **—** ...
- **Search strategy:** additional constraints which orient search.

Filtering

- What does the assigment of a variable imply for other variables?
- FORWARD-CHECKING: each time a variable V_i is instantiated, consider variables V_j connected to V_i by a constraint C_k , and remove from the domain of variable V_j the values which are inconsistant with constraint C_k .

Filtering by Forward-Checking Graph coloring

Assign a color to A,B,C and D (below) so that no two colors are adjacent, with possible colors for each rectangle:

A and B are green or red C is green, blue or red D is blue or green

- Some pairs of variables are linked by a constraint of difference
- The domain of each variable is shown in bracket {...}.

- Let us assume B is arbitrarily assigned to red.

- Instantiation of A to green.

- Instantiation of C to blue.

- Instantiation of D to green.

Α - Solution! В {green} D **≠ ≠ ≠** В {green} {red} **≠** {blue}

- Now, let us assume that C is arbitrarily assigned to green.

- Instantiation of D to blue, and A and B to red.

- Removing red from B's domain.

- B has an empty domain: failure!
- Backtrack is needed in the process...

Arc consistancy

- Arc consistancy is not sufficient for the example above: path consistancy is required.
- K-consistancy, strong k-consistancy.

Back-jumping

- The algorithm Backtrack goes back to the previous choice (e.g., lastly assigned variable).
 - Chronological backtracking.
- <u>Back-jumping:</u> goes back to a variable which caused the failure (e.g., the most recent) in the search tree.
- The conflict set of a variable V is the set of previously instantiated variables, linked to V by a constraint.

Back-jumping

- Let us assume that the order of instantiation is **A**, **B**, **C**, **E**, **D**.
- A = red; B = green; C = blue; E = red
- No value for **D**. Chronological backtracking goes back to **E**!!!
- The conflict set of D is { A, B, C }. Back-jumping goes back to C and not E.

Conclusion

- Constraint programming is a paradigm for solving combinatorial problems.
- Constraint programming is based on a model (variables, domains, constraints) and an algorithm.
- The algorithm uses forward checking to filter the domains of variables (removing values). Arc consistancy is the more general algorithm for that.
- When an empty domain is detected, goes up in the search tree (chronological backtracking, back jumping) to change a previously made choice (and do better!).