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Constraint Satisfaction Problem (1 / 2)

• A CSP is expressed as :
• Variables vi

• Finite domains Di = { d1, d2, …, dk(i) }
• Relations, which always hold, among variables: Cj

• (Cost f)
• Example : SEND + MORE = MONEY

• Goal: For each vi, find one value dk from Di which together satisfy
every Cj. (And which minimizes f.)



Constraint Satisfaction Problem (2 / 2)
• Algorithm FIND-FIRST;

1. Choose an unassigned variable vi

2. Choose a value dk from vi’s domain Di

3. vi <− dk

4. Propagate through Cj [NP complete]
• IF there exists an empty domain Dl , THEN

a. UNDO propagation of step 4
b. UNDO assigment of step 3
c. IF all assignments (vi , dk ) have already been tried THEN FAILURE
d. GOTO step 2 or step 1

5. IF there exists a variable vj which is not assigned THEN GOTO 1.
6. SUCCESS

• Backtrack after step 6 : algorithm ENUMERATE.
• Cost f: Constraint Satisfaction and Optimization Problem (CSOP).

• Packages: CHOCO from Bouygues’ e-lab, (J)SOLVER from IBM (ex-
ILOG), ECLIPSE from IC PARC, CHIP from COSYTEC, AQL from INOVIA, 
PROLOG IV from univ. Marseille, SICSTUS PROLOG, etc.



Unified Modeling Language (UML)
• Graphical modeling language in object-oriented software 

engineering.
• Standard of the OMG since 1997.
• Diagrams :

• Structural (7): Class diagram, …
• Behavioral (3): Use case diagram, …
• Interaction (4): Sequence diagram, …

• Meta-modeling architecture: Meta-Object Facility.



Object Constraint Language
• Object-oriented.
• Specified by the OMG
• Used on UML diagrams
• Can represent:

• Invariants:
• Predicate which must always hold.

• Pre- (resp. post-) conditions:
• Predicate which must hold before (resp. after) an operation.

• Result of a method (body):
• The type of a context’s result = type of the result of the designated

operation.

• Initial / derived value of an attribute.
• …



Uses of CSP for checking UML / OCL 
models
• Uses:

• Checking that a model (either hand written or generated ) verifies
the constraints of a meta-model.
• Dresden OCL Toolkit (univ. Dresden).

• Generating a sequence of tests
• A model includes constraints on specifications or tests of an application.
• Smart Testing.

• Avoiding bugs in class diagrams !
• Bug: Zero possible instances of a class !
• Bug: Mismatch in multiplicity of associations !



Turning class diagrams into CSP
• Satisfiability:

• Definition: A user can possibly create a set of new objects
and links over the classes and associations of the model, so
that no model constraint is violated.

• A CSP has a solution � the model is satisfiable.
• Variants:

• Strong satisfiability: The model must have a finite
instantiation where the population of each class and 
association is at least one.

• Weak satisfiability: same as above, but for « at least one 
class ».

• Liveliness of a class c: same as above, but « where the 
population in c is non empty ».



Turning class diagrams into CSP
The CSP model: Classes
• CSP variables:

• A list variable InstanceC :
• struct( c ) = (oid, f1, …, fn)

• An integer variable SizeC (arbitrarily upper bounded).

• CSP constraints:
• Number of links: SizeC = length(InstanceC)
• Uniqueness of identifers: cx <> cy => cx.oid <> cy.oid



Turning class diagrams into CSP
The CSP model: Associations
• Variables:

• A list variable InstanceAS:
• struct(InstanceAS) = (p1, …, pn) where pi = role of class

• A integer variable SizeAS (arbitrarily upper-bounded)

• Constraints:
• Number of links: SizeAS = length(InstanceAS)
• Existence of referenced objects: link.pi = x.oid



Turning class diagrams into CSP
The CSP model: Associations (cont’d)

• CSP constraints (followed):
• Cardinalities:

• SizeAS < SizeClassX * SizeClassY

• minClassXAS * SizeClassY < SizeAS < maxClassXAS * SizeClassY
• minClassYAS * SizeClassX < SizeAS < maxClassYAS * SizeClassX

• Multiplicities of associations:
• minClassXAS < #{instanceAS.p1 = instanceClassX} < maxClassXAS
• minClassYAS < #{instanceAS.p2 = instanceClassY} < maxClassYAS

Class X Class YAssociation AS
minClassXAS,
maxClassXAS

minClassYAS,
maxClassYAS



Turning class diagrams into CSP (4/6)
The CSP model: the ISA hierarchy
• No new CSP variables.
• CSP constraints:

• Existence of instances in supertype:
• InstanceSub.oid = InstanceSup.oid

• Number of instances: SizeClassSub < SizeClassSup
• Disjointness for a sup Csup and subs Csubi

• SizeCsup > sum( SizeCsubi )
• ObjectI.oid = ObjectJ.oid => I = J

• Completeness of a super
• SizeCsup < sum( SizeCsubi )
• ObjectSup.oid = ObjectSub.oid



Turning class diagrams into CSP (5/6)
The CSP model: OCL constraints
• Invariants.
• Expressed in ECLIPSE Prolog.

• Less direct!

• An OCL constraint is considered as an instance of the 
OCL meta-model
• A node corresponds to constants and variables of the constraint.



Turning class diagrams into CSP (6/6)
Implementation
• (1) Finding the sizes ; then (2) finding the instances.
• ECLIPSE and JAVA libraries, extending Dresden OCL.
• Tool UMLtoCSP http://gres.uoc.edu/UMLtoCSP/



A second way to solve the same problem

• Principle : represent class diagrams in Description Logics
(concepts, roles, individuals) and use a CSP engine as a 
reasoner.
• Finite satisfiability problem.
• Binary associations.
• No OCL constraints.

• Sketch of the CSP model:
• A variable is the number of instances of a class.
• Another variable is the number of associations.
• Constraints are inequalities among variables.
• ISA hierarchies with associations lead to an explosion of variables.

• Experiments with OPL Studio (SOLVER) on Common 
Information Models (management information on a 
network/company).



Conclusion
• Goal: Avoiding bugs in UML / OCL models

• A class with zero possible instances.
• Mismatch in multiplicity of associations.

• Turning a class diagram into a CSP.
• An UML / OCL model is satisfiable � a CSP has a solution.
• Automatically generating a CSP: Representing classes, associations, 

ISA hierarchy as variables and constraints.
• Solving the CSP with an off-the-shelf constraint engine.

• Future work:
• Other UML diagrams ?
• Other OCL constraints ?
• Scaling up ? (e.g., n x 100 classes)
• Using a SAT-solver. What about MIP, evolutionnary algorithms, … ?
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