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Abstract. Constraint programming is traditionally viewed as the com-
bination of two components: a constraint model and a search procedure.
On the other hand, packing seems to be a widely studied application
of constraint programming. In this paper we present two languages: (i)
ClpZinc, showing that tree search procedures can be fully internalized
in the constraint model, and (ii) PKML a language for expressing sym-
bolic packing relations among objects and their components (e.g., Allen
relations between one-dimension shapes, symbolic relations between multi-
dimension shapes, and symbolic relations among straight objects and their
possible alternative shapes). The latter is implemented in the former, and
reaches solvers through Zinc high-level models. PKML is evaluated on
Korf’s problem, improving the best performances [17] on several problem
instances; it is also evaluated on an industrial problem with real data
and complex spatial relations. Finally, the compilation chain from PKML
to solvers is extended to real numbers.

1 Introduction

Constraint programming is traditionally presented as the combination of two
components: a constraint model and a search procedure [18]. Front-end modeling
languages are designed for solving problems using constraint programming solvers,
thus either rely on a fixed strategy (e.g. Essence [6]), or contain special features
for specifying the search strategy for the constraint solvers (e.g. Zinc [14]).
The modeling language Zinc, and its implementation MiniZinc?!, succeeded
in becoming a common input format across many solvers in the Constraint
Programming community. In Zinc, the search procedure is specified through
special annotations that are dedicated to the constraint solver [15] and ignored
by the other solvers. The most recent language to express search strategies seems
to be search combinators [16]. However ***

On the other hand, one of the many applications of constraint programming
seems to be packing: how to pack boxes while respecting a given property
(e.g., smallest englobing volume). A variant in 2 dimensions is to enclose non-
overlapping squares of size 1x1 up to nxn in the smallest rectangle (Korf’s
problem [9,10]). Applications of packing include electronic design automation,
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packing blocks in a circuit layout [12] and scheduling [13]. Due to the wideness
of these applications, packing in itself has led to a large body of work, e.g., [8,2].

In this paper, we present two languages: (i) ClpZinc for expressing search
strategies as constraints, which are then passed on to solvers as Zinc models (hence
building the compilation chain "ClpZinc -> MiniZinc -> FlatZinc -> solvers');
And (ii) PKML (Packing Knowledge Modeling Language [5]) for expressing in
ClpZinc symbolic relations among objects for packing (hence, augmenting the
compilation chain to "PKML -> ClpZinc -> MiniZinc -> FlatZinc -> solvers").

The idea of ClpZinc is to use reified constraints to represent disjunctions ";"
in the search strategy (expressed as CLP clauses) as boolean variables. These
auxiliary variables are the basis for further constraints representing the search
strategy. In other words, ClpZinc considers search not as a procedure but as
constraint satisfaction [11].

PKML’s performances are evaluated on Korf’s problem and on an industrial
one, both using the solver CHOCO [4] at the end of the toolchain. These per-
formances successfully reach the best performances on the former problem [17].
Finally, an extension of the compilation chain to real numbers, and not only
integers, is proposed, opening the way to interleaving finite-domain variables with
real-interval variables. This extension is tested with the real-number interval-
based solver IBEX [3] at the end of the chain.

The paper is organized as follows: section 2 presents an overview of the search
strategy language ClpZinc (see [11] for a more detailed description). Then PKML
is presented in section 3 and is evaluated on two problems; Section 4 describes
the introduction of real numbers into the compilation chain. The last section
sums up our contribution and opens issues for future work.

2 ClpZinc

The language ClpZinc is a Horn-based extension of Zinc where the item solve satisfy;

in models is replaced by a CLP goal of the form “:- goal.”, and where user-

defined predicates are defined by CLP clauses of the form “p(t1, ..., tn) :- goal.”
For example, the following ClpZinc model implements the search strategy

that enumerates all possible values for a given variable in ascending order.

var 0..5: x;
constraint x * x = x + Xx;

labeling(X, Min, Max) :-
Min <= Max, (X = Min ; labeling(X, Min + 1, Max)).

:— labeling(x, 0, 5).
output [show(x)];

This ClpZinc model for the given goal of labeling x between 0 and 5, can be
expanded to the following MiniZinc model:



var 0..5: x;
constraint x * x = x + X;
var 0..5: X1;

constraint X1 = 0 -> x = 1;
constraint X1 =1 -> x 3;
constraint X1 = 2 -> x 5;
constraint X1 = 3 -> x 4,
constraint X1 = 4 -> x 2;
constraint X1 =5 -> x = 0;
solve :: seq_search([
int_search([X1], input_order, indomain_min, complete)
1) satisfy;

output [show(x)];

To be consistent with the search strategy of [17] (to which PKML’s perfor-
mances are compared, see section 3.2), the interval_splitting search strategy
can be modelled:

% Succeeds when X is greater than or equal to Min and lesser than or
% equal to Max, enumerating the intervals of width Step between Min and Max.
interval_splitting(X, Step, Min, Max) :-

Min + Step <= Max,

NextX = min(X) + Step,

( X < NextX ; X >= NextX, interval_splitting(X, Step, Min + Step, Max) ).
interval_splitting(X, Step, Min, Max) :-

Min + Step > Max.

3 Packing

The general problem of "packing" refers to stacking boxes while respecting
some property, e.g., having the smallest volume, balancing weights, respecting
a maximum distance among boxes. An example in 2 dimensions is the Korf’s
problem [9,10]: how to enclose squares of size 1x1 up to nxn in the smallest
rectangle 7 In this section, we propose a Packing Knowledge Modelling Language
(PKML, initially proposed for the rule-based constraint programming language
Rules2CP [5]) for ClpZinc, and evaluate its performances on Korf’s problem and
on an industrial one.

3.1 PKML

This language is composed of (i) symbolic relations over one-dimension shapes,
i.e., Allen’s relations over intervals [1], (ii) symbolic relations over multi-dimension
shapes (Region Connection Calculus (RCC)), i.e., a multi-dimensional extension of
Allen’s relations; and (iii) symbolic relations over boxes/shifted boxes/shapes/ob-
jects. As represented in Fig. 1, a shifted bozx is a boz shifted from the origin by



some vector; A shape is a set of contiguous shifted bozxes; and an object is a set of
possible alternative shapes (an object is a shape OR is another shape OR ... OR
is a last shape, all shapes belonging to the set of alternatives). One application
of this is that an object can represent rotation of shapes, i.e., an object o can
include a first possible shape s; and a second possible shape so, where ss is a
rotation of s; by 90 degrees for example, i.e., 0 = s1 V 0 = s3 (as in Fig. 1, d).

(a) Box (b) Shifted Box

(c) Shape (d) Object

Fig. 1. PKML’s boxes, shifted boxes, shapes and objects.

The following ClpZinc model represents Allen’s symbolic relation of symet-
ric non-overlapping and the multi-dimensional RCC version (i.e., two multi-
dimensional tasks do not overlap iff they don’t in at least one dimension):

% Allen

not_overlaps_sym(T1, T2, D) :-
T2.start[D] >= Tl.end[D] \/
T1l.start[D] >= T2.end[D].

% RCC
not_overlap_sym(T1, T2, N) :-
exists (i in 1..N) ( not_overlaps_sym(T1, T2, i) ).

Here is the ClpZinc model of PKML expressing the internal representation of
boxes, shifted boxes, shapes and objects:

% A box B is a list L of sizes in N dimensions
make_box(B, L) :-
B = (sizes: L).

% A shifted box S is a box B (in N dimensions) and its offsets 0O in N dimensions
% with respect to the origin.



make_sbox(S, B, 0) :-
S = (box: B, offsets: 0).

% A shape S is a list of shifted boxes SBs (in dimensions N).
make_shape(S, SBs) :-
S = (sboxes: SBs).

% An object 0 is a list of alternative shapes Shapes, with its origin Origin (in
% dimension N) and weights Weight. Index is a list of indices of current alternative
% shapes in Shapes. e.g., [1] means that the first shape is the only choice.
make_object (0, Shapes, Index, Origin, Weight) :-

0 = (shapes: Shapes, shape_index: Index, origin: Origin, weight: Weight).

3.2 Example on Korf’s problem

The implementation of PKML is first evaluated on Korf’s problem, using (i)
RCC (and the previous not_overlap_sym clause) and (ii) a more elaborate
non_overlapping clause interfacing to the global constraint geost [2].

Here is the ClpZinc model which defines the n squares in the geost case — a
square in PKML is an object composed of a unique shape defined by an un-shifted
boz of size NxN.

make_square(N, 0) :-
make_box (B, [N, NI1),
make_sbox(S, B, [0, 0]1),
make_shape (SH, [S]),
make_object(0, [SH], [1], [0, 0], [100]).

make_squares(0, [1).
make_squares(N, [0 | 0s]) :-
N >o0,
make_square(N, 0),
make_squares(N - 1, Os).

Fig. 2 plots all non overlapping versions’ performances: an RCC version (noted
"PKML RCC 1..200", 1 and 200 being the lower/upper bounds of the domain
of the variables representing the squares’ coordinates), a geost version (noted
"PKML geost 1..200"), a re-implementation in ClpZinc of the version of [17]
(noted "Simonis & O’Sullivan 1..200"), and the "naive" non-overlapping version
(noted "Naive 1..200") using a 4-term disjunction for expressing non-overlapping
of two squares and not using any search strategy. The geost and RCC versions
use the same search strategy as [17] (including the interval_splitting one of
section 2) except for the non-overlapping constraint, which is the global constraint
geost in the former case and the ClpZinc clause not_overlap_sym in the latter.

The hardware on which this benchmark is performed on 2 Quad CPU at 2,83
GHz using 7,7 Gb RAM. This benchmark suggests that (i) the naive version
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Fig. 2. Performances of PKML on Korf’s problem: Computation time (in second) as a
function of the size n of the largest square, on a logarithmic scale.

always exhibits the worst performances; (ii) the version of [17] exhibits the best
performances (this version is the most efficient implementation of the Korf’s
problem so far), except on 5 problem instances; (iii) the geost version exhibits
an overhead of 2 times on average when compared to [17]; (iv) the RCC version
always exhibits better performances than geost, which is due to the overhead of
the global constraint geost [2] and (v) the RCC version is comparable to [17],
and reaches better performances on 5 problem instances (for n = 13, 14, 15, 16
and 18).

3.3 Example with real data

We now present a second example of PKML use, coming from the industry PSA.
This example involves packing 10 objects with a unique shape and a weight, all
using real data from this company.

Several spatial constraints are added to the model, due to its real aspect:

Gravity Any object is on the ground (z = 0), or there exists another object
exactly below it;

% Post gravity constraint for objects Os and their corresponding tasks Ts.
gravity(Os, Ts) :- gravity(Os, Ts, [1).
gravity([], _, ).
gravity([0|0s], [TI|Tis], T2s) :-
object_z(0, Z),
Z = 0 \/ exists (t1 in T1s) (on_top(T, t1))



\/ exists (t2 in T2s) (on_top(T, t2)),
gravity(Os, T1s, [T|T2s]).

Weight stacking Objects are stacked by decreasing weight (the upper the
lighter);

% Post the weight stacking constraint for objects Os and their
% corresponding tasks Ts
weight_stacking([], _).
weight_stacking([0l0s], [TI|Ts]) :-
weight_stacking_aux(0, Os, T, Ts), weight_stacking(Os, Ts).
weight_stacking_aux(_, [1, _, _).
weight_stacking_aux(01, [02]0s], T1, [T2[|Ts]) :-
not_above(T1, T2) \/ lighter(01, 02),
not_above(T2, T1) \/ lighter(02, 01),
weight_stacking_aux(01, Os, T1, Ts).

Weight balancing Objects on the right of the scene and objects of the left of
the scene must have their weight balanced, within some given percentage,
e.g., 20%;

sum(Os, B, D, L, R) :- sum(0Os, B, D, 0, L, O, R).
sum([], _, _, L, L, R, R).
sum([0|0s], B, D, L1, L2, R1, R2) :-
object_origin(0, D, S),
object_end(0, D, E),
object_end(B, D, BE),
Left 0.weight * bool2int(E <= floor(BE / 2)),
Right = 0.weight * bool2int(S >= floor(BE / 2)),
sum(0s, B, D, Left + L1, L2, Right + R1, R2).

% Post the weight balancing constraint for objects Os, in scene-object B
% in dimension D and ratio Ratio
weight_balancing(Os, B, D, Ratio) :-

sum(0s, B, D, L, R),

100 * max(L, R) <= (100 + Ratio) * min(L, R).

Stack oversize The distance between the basis/tops of any pair of objects
must be less than a given value, e.g., 20;

% Post the stack oversize constraint on tasks Ts, with a limit value of L
stack_oversize([], _).
stack_oversize([T|Ts], L) :- stack_oversize_aux(T, Ts, L), stack_oversize(Ts, L).

stack_oversize_aux(_, [1, _).

stack_oversize_aux(T1, [T2|Ts], L) :-
not_overlaps(T1, T2, 1) \/
not_overlaps(T1, T2, 2) \/



( abs(Tl.start[1] - T2.start[1]) <= L /\ abs(Tl.end[1] - T2.end[1]) <=L /\
abs(T1l.start[2] - T2.start[2]) <= L /\ abs(Tl.end[2] - T2.end[2]) <=L ),
stack_oversize_aux(T1, Ts, L).

This problem is solved in PKML by the CHOCO solver in 0,451s.

4 Real Numbers

A main assumption of constraint programming is that variables own a finite
(therefore enumerable) domain. In this section, we relax this assumption and
extend variables’ domain, and therefore the whole compilation chain, to real
numbers.

4.1 In the compilation chain

For this, the interval-based real numbers solver IBEX [3], using contactors (playing
a similar role for real variables as domain reduction for finite-domain variables),
is integrated into CHOCO as a constraint. Since MiniZinc and FlatZinc already
include real numbers (for connection with other solvers for linear programming and
MILP), minimal patches (i.e., in the parsers and in the internal representation of
variable) have been performed to ClpZinc and CHOCO to integrate real numbers.

Here is an example of ClpZinc model with real variables (note the dot "."
denoting real numbers):

var 0.0..100.0: x;

var 0.0..100.0: y;

- x + 10.0 = y.

output [ show(x) ++ show(y) 1;

After compilation through the chain, here is the resolution using CHOCO+IBEX
(note that IBEX contracts the real variables intervals due to the constraint above):

% parse instance...
length(int wvars) = 0
length(real vars)
Activity-based
% solve instance...
(0.0; 90.0);
y = (10.0; 100.0);

I
[\

"
]

% 1 Solutions, Resolution 0,001s (0,741586ms), 1 Nodes, O Backtracks,
0 Fails, O Restarts



4.2 Interleaving integers and reals

Interleaving integers and reals is always delicate — this is the problem in MILP
for example. At the solver level (CHOCO+IBEX), the proposed global strategy
is to apply search strategies on integers first, and then search strategies on real
numbers — this is due to the greater domain reduction power of finite domain
reasoning.

Integer variables and real variables can now be expressed in ClpZinc: The
following ClpZinc model posts two constraints to set the input real variable Y2
as the value of the output real variable Y1 rounded to a (integer) grid composed
of N ticks per unit interval. When N equals 1, this grid clause rounds the real
variable Y1 to the closest integer (as is performed in MILP), i.e., to variable X
which is the integer counterpart of real output variable Y2.

% X is a temporary int variable. domain(X) = [LB(Y1) * N , UB(Y1) * NI
grid(Y1, Y2, X, N) :-

abs(Y2 - Y1) < 1.0 / (2.0 * int2float(N)),

Y2 = int2float(X) / int2float(N).

5 Conclusion

In this paper, we have presented two languages, ClpZinc for expressing search
strategies, and PKML for expressing packing relations. Hence we built a compi-
lation chain "PKML -> ClpZinc -> MiniZinc -> FlatZinc -> solvers'. ClpZinc, a
Horn-based modeling language, uses reified constraints to express disjunctions
as boolean variables, leading to consider search as regular constraints. The ad-
vantages are easy expression of search strategies and more efficient resolution by
solvers due to early propagation because of these additional constraints.

We also presented PKML, a language in ClpZinc for expressing symbolic
relations among intervals (Allen’s relations), multi dimensional objects (Region
Connection Calculus) and objects with alternative possible shapes. Benchmarks
of PKML on Korf’s problem exhibit performances comparable to state-of-the-art
ones, and even better on several problem instances. The PKML language also
represents and solves a packing problem with real data and constraints. Finally,
we presented an extension of this compilation chain to real numbers, i.e., real-
interval variables and not only finite-domain variables, and a way to interleave
both kinds of variables.

Future work includes using evolutionnary algorithms (e.g., CMA-ES [7]) to
represent curved objects and apply them to packing with mixed curved/straight
objects.
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