
Athéna: a generic multi-purpose environment
for simulating complex systems

Jean-François Tilman
Philippe Morignot
Jean-Clair Poncet

Nelly Strady
Axlog ingénierie

19-21 rue du 8 mai 1945
94110 Arcueil, France
(+33) 1 41 24 31 00

{Firstname.Lastname}@axlog.fr

Bruno Patin
Dassault Aviation

78 quai Marcel Dassault
92552 Saint-Cloud, France

(+33) 1 47 11 58 54
Bruno.Patin@dassault-aviation.fr

Keywords:
Generic simulation framework, distributed simulator, multi-agent, HLA.

ABSTRACT: In this paper, we present a generic multi-purpose simulation environment, called Athéna, which has been
developed to simulate the behaviour of systems in complex environments. This simulation environment allows to merge
discrete and continuous aspects by using discrete automata on the one hand, and continuous parameters and interac-
tions on the other hand. These aspects can be tailored by the user through shared libraries and a scenario description
language. Simulations can be distributed in a client/server mode through a network, to take advantage of heterogeneous
workstations. It can also be interoperated with other simulations through the High Level Architecture standard. Current
applications of Athéna include: (1) simulation of a package of autonomous unmanned aircraft in missions such as at-
tacking targets in hostile territories; (2) embedded system architectures described with AADL (Architecture Analysis &
Design Language).

1. Introduction

Simulation is often a cheap and fast alternative to test sys-
tems under development. It enables the representation of
their behaviour in a simulated environment and delay the
moment when they will be really integrated in the complete
platform. This is even more true when working in research
and development domains, where the target platform host-
ing the developed system does not exist yet. Simulation
also enables to adapt parameters, experiment many config-
urations, modify the environment, and then stress the tested
system to evaluate its performances.

Many simulators exist, which can for example be used
in avionics or defense domains. Some of them, like Es-
cadre [1] are able to support a large scale of applications,
but they require strong programming skills. Other ones,
like the Stage simulator family [2], are more intuitive but
are also dedicated to more precise industrial problems (air-

craft or helicopter simulation). Nevertheless they are not
well adapted to projects out of their scope. A simulator
like RT-Sim [3] is able to simulate the execution of any
user code, and the configuration of the simulated architec-
ture can be easily done through a user interface, but such
a simulator is too low-level for some purposes, since it is
dedicated to the simulation of the embedded real-time code
itself. To cover multi-agent domains some simulators also
exist ([4, 5]), but they are often too specialized and don’t
support simulation of the environment. Thus, it is diffi-
cult to find a simulation environment both easy to use by
a non-programmer user, and generic/flexible enough to be
adapted to research subjects.

In this article we present Athéna, which has been developed
to cover this lack. Athéna is a generic simulation environ-
ment used in unmanned aerial vehicle (UAV) research area,
but also in other domains like space or real-time system
applications. We explain its concepts, its extensions and



genericity capabilities, and the distribution and interoper-
ability aspects. We also present two examples illustrating
the interest of Athéna in relation to other solutions: To sup-
port the development of embedded autonomous functions
for UAVs, and to build a simulator for the simulation of
real-time system architectures.

2. Overview of Athéna

2.1 Raison d’Être of Athéna

Athéna [6, 7] was born in 1998 from the need of Das-
sault Aviation to develop advanced software for Unmanned
Aerial Vehicles (UAVs). This includes, among others, pro-
totyping autonomy functions for mission management and
assessing their efficiency [8]. Due to the criticality of such
a system, real aircraft prototyping can not be foreseen and
simulation is the only way to test the autonomous aircraft
behaviour. In order for the simulation to be useful, it has
to be fairly realistic: the target simulator has to be able to
describe complexe environments with the sufficient level of
details and to focus on specific aspects if needed. A lot of
simulation tools are available, many of them fully adapted
to the avionics domain and supplying accurate simulation
facilities. So, why did not we choose one of them?

Firstly, for the UAV simulation, all the interesting mat-
ters come from the autonomy functions and specific high-
level data used as inputs and outputs. So, most of the ser-
vices provided by the COTS simulators (e.g., Escadre [1],
Stage [2]) are not useful for us. A crucial issue in our
problem is to be able to integrate user-defined elements,
behaviours and processings in the simulation. An alter-
native could have been to use a generic agent simula-
tion environment: encapsulating the autonomy functions in
agents, it would have been possible to simulate it in a pa-
rameterizable environment. The main problem is that the
“generic” simulation environments are generally speaking
not so generic: for instance, some environments are really
efficient to model a specialized domain (fire-fighting in the
case of Phoenix [4]), but are difficult to adapt to other situa-
tions where there is no discretized space with data on cells.
Moreover, even in the case where they are generic enough,
they focus on the multiple-agent system simulation, with
less capabilities on the environment description. This is for
instance the case of the ARCHON system [5], in which the
agent concepts are well suited for advanced functionalities,
but in which the environment description and the monitor-
ing module are too poor for us.

Secondly, an important point of the simulation is to be able
to assess the tested component efficiency in different he-
terogeneous situations, with the ability to focus on several
particular points and refine specific environment models in

parallel with the tested component refinements. This re-
sults in the need of a modular, easy to parameterize, simu-
lation: we want a means to quickly prototype short scenar-
ios, only using basic components such as data and func-
tions to handle them as well as precise detailed ones with
well-described components and realistic behaviours. This
means that we have to be able to simulate simple com-
ponents, which are able to implement the minima of the
needed airplane system behaviours, as well as to replace or
change them as many times as possible with minimal cost,
according to new developments or previous simulation re-
sults. It results that we do not have the need for all the
high level functions provided by the commercial simula-
tors, while we have requirements for a high genericity and
scalability level of simulation core software.

In parallel, some signal processing functions are used by
Dassault Aviation for particular avionics domains such as
Radar Cross Section processing. The simulation environ-
ment has to enable the execution of these functions, for in-
stance, to model the realistic behaviour of a radar. Thus,
the target simulator has to provide a means to easily intro-
duce elementary user’s functions and to compose them, in
order to plug the resulting functions in the final simulation
environment. The general underlying idea is to be able to
replace step by step the basic components designed at the
beginning of the simulation by the real signal processing
ones whenever we can. This continuously refines simula-
tion accuracy and improves precision of results.

Moreover, Dassault Aviation expressed the need for its si-
mulation environment to be usable by operational experts,
for example, and not by computer scientists. Most of the
available COTS simulation environments need strong pro-
gramming skills (e.g., Escadre [1]), which is not accept-
able for us. Hence the decision to design a specific simple
high-level language to describe a simulation. For modu-
larity purposes, this language introduces a few simplified
object concepts, to enable composition and limited inheri-
tance. From this point of view, the Athéna language can
be compared to SMILE [9], but with a somehow more in-
tuitive syntax. This way, two kinds of users have been de-
fined for Athéna: the basic user, not necessarily a computer
scientist, who is able to describe a simulation using avail-
able libraries, and the advanced user, a computer scientist,
who will write libraries of objects which are usable in the
simulation environment.

Finally, Athéna has to fulfill different classes of require-
ments:

� Design a flexible simulation environment for au-
tonomous functions. This is done through the use
of elements extracted from libraries and composable



using a simulation description script;

� Allow for composition of processing functions,
which are called them during a simulation. It must be
pointed out that such an integration leads to the fact
that we do not have a real-time simulation. No other
mechanisms than the computing power are used to
ensure such a behaviour;

� Enable to distribute the simulation over a network of
workstations to perform efficient simulation of pro-
cessor consuming processing and to allow private
components to work with public ones in compliance
with property rights or confidentiality requirements.

The need to introduce some vehicle simulation elements for
UAVs and some processing simulation elements for signal
processing has required to design a system that can han-
dle both event- and continuous-based simulation elements.
These requirements also result in a design oriented through
easy integration of user’s functions. This requires to pro-
vide some data types (used for signal processing as for
other simulation purposes) and the basic tools to use them.
Afterwards, considering all the requirements, it appeares
that the envisaged design is not specific to avionics domain
but turns out to be generic for a large range of applications.

3. Athéna Description

3.1 Global Architecture

Like most distributed applications, Athéna is made of in-
teracting servers and clients. On the one hand, each server
hosts part of the simulation objects, as parametrized by the
user, and is in charge of managing the simulation execu-
tion. The different servers are in charge of co-ordinating
themselves to have a coherent time unfolding and to acti-
vate the different simulation components. This is enabled
by a distributed synchronizer and an object manager. The
object manager is able to create, contain and destroy the
simulation elements. It is also used to start and stop the
execution of the simulation. The distributed synchronizers
are contained by the servers (one per server) and converse
through the network to maintain a consistent logical date
for the whole simulation. The servers also load the list of
libraries containing the implementation of the different ob-
jects and functions to be simulated. On the other hand, a set
of clients can be deployed on the network: one for the si-
mulation initialization and control of execution, and others
for visualization, traces, data storage, etc. Except for the
simulation controller, the other clients are optional and not
directly related to the simulated functions. Interfaces are
provided to the advanced-user to enable the development
of additional specific-purpose clients.

The distribution issue in Athéna relies on the use of a
CORBA (Common Object Request Broker Architecture)
bus. CORBA is an international standard that provides a
way to use objects over a network just as if they were lo-
cal [10]. In Athéna, all the simulation elements like syn-
chronizers and object managers in the servers are CORBA
objects. This means that they can receive requests from
any other element, or from a client application, and answer
these requests according to predefined remotely accessible
methods. A CORBA naming service is used to collect ref-
erences to all the elements and establish the communica-
tions among the simulation objects. Once all the objects
have been registered to the naming service, the different
clients and servers are able to use CORBA facilities to com-
municate (Figure 3.1).

CORBA bus

server 1 server 2 client 1 naming
service

Figure 3.1: General architecture of Athéna

Two different notions are important to understand the be-
haviour of the simulation environment. The first one, dis-
tributed elements, is attached to the distribution aspect. A
distributed element is a simulation object for which the
user is able to specify the target server containing it. A
distributed element is accessible from any other simulation
component through a CORBA reference. A data container,
such as the position of a robot, is a distributed element.

The second notion is the one of sequenced object and deals
with the simulation unfolding aspect. A sequenced object
is a particular distributed element that is periodically acti-
vated by the server managing it to perform actions. The
term sequenced object comes from the notion of sequence-
ment of activations in the servers at the different simulation
time steps.

These two notions are the basis for the components des-
cribed in the following sections.

3.2 Basic Standard Components

One of the objectives of Athéna is to enable building simu-
lations by assembling low level components such as data
containers or handling functions specified by the user. The
domain-specific high level components (aircraft, vehicles,
radars, etc.) can be built using these basic components.



They can also be put together in user libraries. But these
components are not provided by the simulator itself.

To simulate a continuous domain, as needed by a model
of some physical world aspects (dimensions, temperatures,
etc.), two kinds of basic components exist: the parameters
and the interactions. A parameter is a data container which
may be read or modified during the simulation. Some spe-
cial parameters are already defined for the usual data types:
integers, floats, strings. New ones can be introduced to han-
dle more complicated data, provided that they respect inter-
faces of the simulation environment. An interaction is an
element which periodically executes a user function. It is
the main user of the parameters. Conditions can be added
to enable or disable the activation of interactions depend-
ing on various criteria: period, state, condition on specific
parameters.

It is also possible to model discrete aspects such as au-
tomata using provided basic components. The states are
used in conjunction with the transitions to represent var-
ious states of the simulated system and the modification
of these states. These states can be used to enable or dis-
able the activation of other elements such as interactions.
Events are other discrete elements. They are used to change
states, by firing transitions, or to enable and disable the ac-
tivations of some elements. They depend on various condi-
tions, which can be based on the value of parameters, states
or other events.

When creating a scenario, the user must be able to prepare
complex components, and then use several copies of them.
This is done through the notion of instance. An instance is
a generic container that can include parameters, automata
and interactions. This notion is very close to the object no-
tion in object-oriented programming. For example, we may
need to model an aircraft and use this model to compose a
formation. In this example, if the aircraft model contains
a parameter position, then each instance of this model will
have its own instance of the position parameter.

The first projects using Athéna have shown that several
higher level components are often used. So, it became in-
teresting to supply them with Athéna to avoid their redefi-
nition in each project.

When modeling an aircraft, the user may need to model
embedded real-time tasks and how they are scheduled. The
user then provides two new components. A task repre-
sents a real-time task and specifies its attributes (period,
computation time, priority, deadline). A process represents
a processor containing tasks and activating them with re-
spect to a particular scheduling policy (first-in first-out, rate
monotonic, deadline monotonic, highest priority first, ear-

liest deadline first).

Interactions and tasks are useful to call one user func-
tion during the execution of the simulation. However, this
mechanism can be too limited in some cases, when the user
needs to combine many functions to produce the expected
result. A processing element is provided to solve this prob-
lem. A processing is either a simple processing, which
calls a user function, or a composite processing which re-
cursively calls other processings. The composition can use
conditional structures and loops (i.e., if, for, while) to be-
have differently depending on external conditions or inter-
nal results.

3.3 Scenario Description Language

The creation of a simulation scenario consists first in the
composition of many elements to model the simulated sys-
tem. Graphical clients are useful to help the user in this job,
by providing him with a user-friendly interface. Once the
scenario is ready, these clients can control the simulation
servers to instanciate the simulation and execute it. Never-
theless, when we want to use the simulator in batch mode,
or to keep scenario descriptions and constitute reusable
component model databases, we need a means to record
the descriptions in script files. This is why we have de-
fined a specific description language. This language is used
to specify the different aspects of the simulation scenario:
simulation time step, simulation objects, simulation data.
Figure 3.2 illustrates the use of this language to describe a
very short scenario with four parameters representing the
position and speed of a rover, and an interaction modifying
them to periodically compute the new position with respect
to the speed. In this example, no distance or speed unit is
mentioned. Likewise, the duration of the time step is not
given in the description. All this is only known by the user,
and taken into account in the function computeNewPosi-
tion.

PARAMETER Long positionX = 0;
PARAMETER Long positionY = 0;
PARAMETER Long speedX = 10;
PARAMETER Long speedY = 5;

INTERACTION newposition:
computeNewPosition(
positionX, positionY, speedX, speedY);

END;

Figure 3.2: Short example of scenario description

A complete set of simulation description scripts can be
used to specify a simulation scenario. The object-oriented
script language supports inheritance and encapsulation. It
allows for file references, enabling to decompose the simu-



lation into elementary objects. This makes clearer the si-
mulation scenario description while maximizing the reuse
of the different simulation elements.

The description langage also introduces a new concept,
which does not appear among the simulation elements: a
prototype. It can be compared to a class, that is the des-
cription of an abstract component, which will be used later
to create instances. It supports the inheritance mechanism
to simplify the creation of complex prototypes by deriving
other ones. Of course, a prototype can contain anything an
instance can. Figure 3.3 shows an example of a scenario
description using a prototype. In this example we also use
a new parameter type defined by the user: Rectangle.

PROTOTYPE Rover
PARAMETER Long positionX = 0;
PARAMETER Long positionY = 0;
PARAMETER Long speedX = 10;
PARAMETER Long speedY = 5;

INTERACTION newposition:
computeNewPosition(
positionX, positionY,
speedX, speedY);

END;

INSTANCE Rover myrover;
PARAMETER Rectangle limits =
"-100,-100,100,100";

INTERACTION reachLimits:
checkSpeedVector(
myrover.positionX, myrover.positionY,
myrover.speedX, myrover.speedY, limits);

END;

Figure 3.3: Scenario description using a prototype

Figure 3.4 shows an example containing discrete elements:
two states on and off, transitions between these two states,
events to trigger off these transitions, and use of a state as
a condition to activate an interaction.

PROTOTYPE AircraftSystem
PARAMETER DoubleTriplet position;
PARAMETER DoubleTriplet speed;

STATESET status Off, On = Off;
EVENT putSystemOn @launchSimu = 1;
EVENT cut @becomesNotAvailable = 1;
TRANSITION Off : putSystemOn -> On;
TRANSITION On : cut -> Off;

INTERACTION RadarDetection :
PERIOD 2,
WHEN (On),
DetectFunction(position, speed);

END;

Figure 3.4: Scenario description using discrete elements

4. Extension and Genericity Mechanisms

4.1 User Functions

One of the main specific aspects of Athéna is the fact that
all the advanced computations are provided by the user.
The mechanism we provide to enable this is based on the
use of shared libraries. The user develops his functions
with respect to a predefined prototype and encapsulates
them into a shared library. At execution time, the library is
dynamically loaded and the functions can be found thanks
to their symbols. The description of the scenario is read
to know the name of the functions which must be called
during the execution.

This mechanism is one of the main reasons of the high ex-
tensibility and genericity of Athéna, since any source code
can be included into a function. Because the development
of these functions requires programming skills, only ad-
vanced users will be in charge of this development.

In some cases, generic helper functions are provided to
allow the user to develop his functions using widespread
toolsets such as Matlab, Scilab, GNU-Prolog, etc.

4.2 User Datatypes

The second aspect of the extensibility mechanisms is the
possibility to introduce and manipulate user data types.
The servers contain and manage generic CORBA objects,
the parameters, without any particular semantics. So, they
don’t need to know anything about the contents of the data
type elements, so long as they are parameters. Athéna al-
ready supplies support for common basic data types such
as integers, floats or strings. But this is often not enough.

New parameters can be developed (e.g., complex num-
bers). They can contain any data provided that they respect
requirements coming from the generic parameter class.
These requirements include the implementation of function
allowing reading and writing data.

The new parameter can enrich the generic parameter inter-
face by introducing methods dedicated to the specific data
it manipulates. For example, we can develop an array pa-
rameter with methods to access a given item, to sort the
contents or to check the validity of the data.

4.3 Even more Extension Capabilities

Athéna, through a strongly layered architecture, enables
lower level extensions mechanisms. By default, these ca-



pabilities are not proposed to any user and concern highly
specific cases. Moreover, their implementation requires an
advanced knowledge of Athéna structure and principles.

It is possible to create new CORBA objects extending the
very basic elements which are handled by the server, that is
the distributed elements and the sequenced objects. In this
case, the server is only used as a container or a sequencer
which will regularly activate the objects.

The last possibility to extend Athéna is the development
of specialized servers. They will interact with the default
server through the CORBA bus. This feature can be use-
ful to establish a particular connection of Athéna to another
tool.

Moreover, it is possible to use the CORBA interface of
all the simulation elements to interact with them. Specific
clients can be developed to control and visualize the simu-
lation when the generic ones are not sufficient. This tech-
nique has been used in the development of ADeS (see 6.2).

5. Distributed Simulation

5.1 Running Athéna over a Network

Many reasons exist to distribute a simulation over a net-
work. Of course the simulation of a huge scenario requires
a lot of resources and may be improved by using several
computers. In our case, the distribution also enables the
use of a given platform to execute the tested function. This
can be needed for instance for software licence purpose.

The distribution of servers and simulation objects over a
network is done by using CORBA. The simulation man-
agers (enclosed in Athéna servers) as well as the simulation
elements are CORBA objects, remotely accessible. Nam-
ing conventions allow the different simulation elements to
access each other thanks to the naming service. The control
and visualization of the simulation are also done by clients
using CORBA.

Using a widely-spread international standard as CORBA to
support the communication process between the different
elements of the simulation eases the development of spe-
cific clients and ensure the behaviour of the system. More-
over, this gives flexibility on the platforms on which it can
be used and the language additional clients are developed
with.

5.2 Interoperability with HLA

HLA (High Level Architecture)[11] is used by the simula-
tion community to interoperate several simulations into a

single federation, that is an assembly of federates collabo-
rating together to produce the result. Athéna also supplies
a support for HLA. This can be interesting to develop spe-
cific aspects of a simulation and to introduce them into a
global scenario managed by another tool.

Several approaches can be imagined. First, let us suppose
that we have another simulator. Then we use Athéna to
provide it with the simulation of a very specific compo-
nent, and use the HLA mechanisms to publish the results
to the main simulator. In this case Athéna is the slave, the
other simulator is the master.

Second, we can also use Athéna with other simulators at
the same level. Each of them support an equivalent part
of the scenario. This can be envisaged to put together the
simulations of several vehicles provided by specific simu-
lators into an environment. In this case all the simulators
will collaborate together.

The flexibility of Athéna enables its connection with simu-
lators having poor flexibility capabilities. Suppose that we
have a simulator publishing data in a predefined format. It
is possible to easily adapt the Athéna side of the simula-
tion to handle the specific format of the data. This is done
by introducing a specific user function, able to handle and
transform the format of the data.

6. Examples of Simulations Using Athéna

Athéna has been already used for various purposes. We
present here two examples illustrating the capabilities of
this simulation framework. The first example belongs to
the initial application domain of Athéna. The second one
shows a completely different use of the simulation kernel
to build a specialized simulation tool. Other examples are
described in [12].

6.1 Mission Management System for Autonomous
Aircraft

Managing Unmanned Combat Aircraft Vehicles (UCAVs),
which have been studied for 25 years now, need some par-
ticular simulation facilities during the design and develop-
ment phases. At design time, it is very useful to be able
to simulate the behaviour of the envisaged system, while
no system component has yet been developed. At develop-
ment time, it is necessary to be able to test the developed
system while they are iteratively prototyped. For both these
aspects, the Athéna framework enables to simulate system
behaviour at coarse grain, early in the life cycle, while con-
tinuously refining the simulation parameters to reach a full
implemented realistic simulation environment at the end of
the project.



The Mission Management System (MMS)1 is an embed-
ded system that manages in real time the different parame-
ters of missions of UCAVs flying in package. A package
of UCAVs can contain up to eight UCAVs flying together.
Then, the MMS is a system distributed among all aircraft of
the package that enables to manage the mission with very
limited human intervention. Actually, human intervention
is limited to emission of requests for information, emis-
sion of environment information and tactical orders (tar-
gets, threats, tactics). The main tasks of such a system are
then:

� To determine the package path: to reach the target(s)
and to come back according to pre-determined flight
corridors2;

� To determine the package configuration: to allocate
a role in the package to each aircraft (e.g., communi-
cation relay, jammer, bomber) ensuring deconfliction
of role allocation and resource usage;

� To plan the communication inside the package and
between package and ground-based command and
control;

� To take into account safety parameters (e.g., proba-
bility of survive, reaction to threats and tactics.

Of course, this list is not exhaustive. However, as we can
see, the MMS has a large range of activities to perform,
each one being corelated to other. The development of such
a system takes advantage of a flexible and scalable simula-
tion environment. In the early phases of the system life cy-
cle, the different components of the MMS are outlined and
introduced in the simulation environment as Athéna mock-
up components. Each component can further individually
evolve while keeping a global system simulation capability.

The simulation environment uses Athéna as a basis. A
specific Athéna component has been developed to simu-
late the Internal Formation Data Link (IFDL)3. Figure 6.5
illustrates the way the different UCAV platforms are inte-
grated in the simulation environment. Each platform uses
the IFDL simulated component to communicate with other
ones. Figure 6.6 shows how each platform is implemented.
The different elements of a simulated UCAV are encapsu-
lated in the platform component. An Aircraft Bus compo-
nent has been developed as an integrated Athéna element.
The different sub-systems of the UCAV are connected to
this Aircraft Bus and use it to communicate with one an-
other.

Package

Platform #1 Platform #2 Platform #3

IFDL

Athéna Simulation Environment

Figure 6.5: Platform integration in simulation environment

Package

Aircraft Bus

MMS Auto Pilot Weapon Comms

Athéna Simulation Environment

Figure 6.6: MMS intergration in simulation environment

In order to be able to see the results of the MMS activity,
and particularily the results of the planning process, a small
graphical interface has been developed. This interface is
directly connected to the simulation environment. It polls
different parameters and variables to draw the results of the
planning process. Figure 6.7 shows a screen capture of the
path planning visualization. The grey points are the way-
points of the mission, the blue points cercled by yellow cir-
cles are the threats (ground-to-air missiles and radars). The
different color line are the paths used by the different pa-
ckage to reach the target area, at the bottom of the picture.

Following the Athéna principles, the focus is put upon the
distribution of the decision through the package without
changing anything to the simulation. We are able to trans-
form all or a part of the Mission Management System of
the number of UAV we choose and immediately check how
these modifications influence the behaviour of the package
in exactly the same environment.

1This work has been partially funded by the French Ministry of Defense through European and French projects.
2Timed portions of space in which the package is authorized to fly
3IFDL is a low-range data link used to communicate from one UCAV to another with low level of detection probability



Figure 6.7: Package planning interface

Moreover, when the MMS will be a bit more stable, we will
be able to incrementally introduce in the simulation other
objects with a focus on piloted aircraft in order to assess
the behaviour of the system with respect to the pilot.

6.2 Simulation of Embedded Real-Time Architectures

AADL (Architecture Analysis & Design Language) is an
architecture description language initially designed for the
avionics domain [13, 14]. Its purpose actually is more
generic and it can be used for the description of any em-
bedded real-time system. This language gives a means to
describe system architectures with hardware and software
aspects (processors, bus, memory, tasks, communication
ports and connections, etc.). It is currently standardized
by a committee under the authority of the Society of Auto-
motive Engineers (SAE), aerospace division.

During a study with the European Space Agency, we have
evaluated the first draft versions of this standard. To test
the capability of this language to be supported by tools, we
develope ADeS, a simulator of the behaviour of described
architectures. Such a simulation can show the scheduling
of the tasks, the state of the processors, the transmission of
messages on the buses, etc. The idea of its realisation is
to use the simulation kernel of Athéna with accurate high-
level elements.

The component categories defined by AADL can not be di-
rectly mapped on the basic simulation elements provided
by Athéna. Then, they have to be modeled by assembling
several Athéna elements. This modeling is easy for some
concrete components such as tasks or processors. A task
is modeled by parameters representing its real-time proper-
ties and the progression of its execution, a processor uses
an interaction to schedule the tasks and advance the execu-
tion of the most prioritary one.

Modeling data and event connections require more effort
because this notion is distributed between a sender and re-
ceiver elements. For this category, and for all the other
ones, the use of various specific parameters and interac-
tions have enabled their representation in the simulation.

The control of the simulation kernel is performed by a spe-
cific user interface. Since the scenario description language
designed by Athéna does not cover the AADL concepts,
the user interface is also in charge of the explicit creation
of the simulation elements on the server. During execution,
each component is periodically activated to simulate its be-
haviour during a new time step. The user interface uses
also CORBA to interact with the server, get the results and
visualize them, as shown by figure 6.8.

Figure 6.8: ADeS man-machine interface

This project has shown the real capability of the Athéna si-
mulation kernel to support a simulation with a completely
different purpose than its initial application domaine. Al-
though the manipulated concepts are not the same as the
initial Athéna ones, the adaptations has been easily done.
They remains already feasible by any advanced user. That
is why we never use any internal code, which would not be
accessible for an external user.



7. Conclusion

Athéna is a flexible simulation and prototyping environ-
ment. Even if it was initially dedicated to aircraft auto-
nomy, it has shown its capability to be used in various other
domains (defence, space). Its high extensibility to support
user components is its main strong point. This is illustrated
by its use as a simulation kernel to build other simulators,
such as ADeS.

In order to allow a smooth development curve a develop-
ment club has been created (see [15]). The members of this
club share Athéna and its generic components, and work
together to improve it.

Within the context of this club, several improvements are
foreseen. The main one is the addition of a native support
for the autonomous agent notion. This new generic agent
component will provide a simple way to represent agents,
with knowledge management, decision autonomy, commu-
nication capabilities and other characteristics of the agent
concept.

8. References

[1] http://escadre.cad.etca.fr/
[2] http://www.engenuitytech.com/products/STAGE/
[3] http://www.axlog.fr/prod/rtsim.html
[4] Adele HOWE, Evaluating planning through simula-

tion: an example using phoenix, in Porceedings of the
Workshop on the Foundations of Automatic Planning:
The Classical Approach and Beyond, AAAI Technical
Report SS-93-03, pp.53-57.

[5] T. WITTIG, N. R. JENNINGS and E. H. MAMDANI,
ARCHON – A framework for intelligent co-operation
IEE - BCS Journal of Intelligent Systems Engineer-
ing – Special Issue on Real-Time intelligent Systems
in ESPRIT, 3(3):168-179.

[6] http://www.dassault-aviation.fr/athena/index.html
[7] Christophe GUETTIER, Bruno PATIN and Jean-

François TILMAN, “Validation of autonomous con-
cepts using the Athéna environment”, ESA On-board

Autonomy Workshop, Noordwijk, The Netherlands,
October 2001.

[8] Claude BARROUIL, Bruno PATIN, Nicolas PREGO,
“TANDEM: an agent-oriented approach for mixed sys-
tem management in air operations”, RTO meetings –
Advanced mission management and system integra-
tion technologies for improved tactical operations, Flo-
rence, Italy, October 1999.

[9] http://www.cs.tu-berlin.de/~smile/ess97/
[10] http://www.corba.org/
[11] https://www.dmso.mil/public/transition/hla/
[12] Bruno PATIN, Stéphane NICOLAS and Jean-François

TILMAN, “Athéna framework – Two examples of use
in the aeronautic and space domains”, ESA 7th Inter-
national Workshop on Simulation for European Space
Programs, Noordwijk, The Netherlands, November
2002.

[13] http://www.aadl.info/
[14] http://www.axlog.fr/R_d/aadl/aadl_en.html
[15] http://www.dassault-aviation.fr/athena/club.html

Author Biographies

JEAN-FRANÇOIS TILMAN is in charge of the system
engineering activity at Axlog ingénierie. He has managed
the development of the Athéna simulation kernel.

PHILIPPE MORIGNOT is chief scientific officer at
Axlog ingénierie, Arcueil, France. He supervises and par-
ticipates in the research & development projects.

BRUNO PATIN is the initiator of the Athéna development
at Dassault Aviation and manages the activity of the Athéna
user club.

JEAN-CLAIR PONCET is in charge of the autonomous
system activity at Axlog ingénierie.

NELLY STRADY has participated to the development of
Athéna and works for the autonomous aircraft studies at
Axlog ingénierie.


